

Defensible 10

Annex C (Normative):
D03-Compute,
Platform & Workload
Security Architecture
Technical Standard

Standards Committee
12-5-2025

Page 1 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

© 2025 ISAUnited.org. Non-commercial use permitted under CC BY-NC. Commercial

integration requires ISAUnited licensing.

Page 2 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

About ISAUnited

The Institute of Security Architecture United is the first dedicated Standards

Development Organization (SDO) focused exclusively on cybersecurity architecture and

engineering through security-by-design. As an international support institute, ISAUnited

helps individuals and enterprises unlock the full potential of technology by promoting

best practices and fostering innovation in security.

Technology drives progress; security enables it. ISAUnited equips practitioners and

organizations across cybersecurity, IT operations, cloud/platform engineering, software

development, data/AI, and product/operations with vendor-agnostic standards,

education, credentials, and a peer community—turning good practice into engineered,

testable outcomes in real environments.

Headquartered in the United States, ISAUnited is committed to promoting a global

presence and delivering programs that emphasize collaboration, clarity, and actionable

solutions to today's and tomorrow's security challenges. With a focus on security by

design, the institute champions the integration of security at every stage of architectural

and engineering practice, ensuring robust, resilient, and defensible systems for

organizations worldwide.

Page 3 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Disclaimer

ISAUnited publishes the ISAUnited Defensible 10 Standards Technical Guide to provide
information and education on security architecture and engineering practices. While
efforts have been made to ensure accuracy and reliability, the content is provided “as
is,” without any express or implied warranties. This guide is for informational purposes
only and does not constitute legal, regulatory, compliance, or professional advice.
Consult qualified professionals before making decisions.

Limitation of Liability

ISAUnited - and its authors, contributors, and affiliates - shall not be liable for any direct,
indirect, incidental, consequential, special, exemplary, or punitive damages arising from
the use of, inability to use, or reliance on this guide, including any errors or omissions.

Operational Safety Notice

Implementing security controls can affect system behavior and availability. First,
validate changes in non-production, use change control, and ensure rollback plans are
in place.

Third-Party References

This guide may reference third-party frameworks, websites, or resources. ISAUnited
does not endorse and is not responsible for the content, products, or services of third
parties. Access is at the reader’s own risk.

Use of Normative Terms (“Shall,” “Should,” “Must”)

• Must / Shall: A mandatory requirement for conformance to the standard.
• Must Not / Shall Not: A prohibition; implementations claiming conformance shall

not perform the stated action.
• Should: A strong recommendation; valid reasons may exist to deviate in

particular circumstances, but the full implications must be understood and
documented.

Acceptance of Terms

By using this guide, readers acknowledge and agree to the terms in this disclaimer. If

you disagree, refrain from using the information provided.

For more information, please visit our Terms and Conditions page.

https://www.isaunited.org/terms-and-conditions

Page 4 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

License & Use Permissions

The Defensible 10 Standards (D10S) are owned, governed, and maintained by the

Institute of Security Architecture United (ISAUnited.org).

This publication is released under a Creative Commons Attribution–NonCommercial
License (CC BY-NC).

Practitioner & Internal Use (Allowed):

• You are free to download, share, and apply this standard for non-commercial use

within your organization, departments, or for individual professional, academic, or

research purposes.

• Attribution to ISAUnited.org must be maintained.

• You may not modify the document outside of Sub-Standard authorship workflows
governed by ISAUnited, excluding the provided Defensible 10 Standards
templates and matrices.

Commercial Use (Prohibited Without Permission):

• Commercial entities seeking to embed, integrate, redistribute, automate, or
incorporate this standard in software, tooling, managed services, audit products,
or commercial training must obtain a Commercial Integration License from
ISAUnited.

To request permissions or licensing:
info@isaunited.org

Standards Development & Governance Notice

This standard is one of the ten Parent Standards in the Defensible 10 Standards (D10S)

series. Each Parent Standard is governed by ISAUnited’s Standards Committee, peer-

reviewed by the ISAUnited Technical Fellow Society, and maintained in the Defensible

10 Standards GitHub repository for transparency and version control.

Contributions & Collaboration

ISAUnited maintains a public GitHub repository for standards development.
Practitioners may view and clone materials, but contributions require:

• ISAUnited registration and vetting
• Approved Contributor ID
• Valid GitHub username

All Sub-Standard contributions must follow the Defensible Standards Submission

Schema (D-SSF) and are peer-reviewed by the Technical Fellow Society during the

annual Open Season.

Page 5 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Abstract

The ISAUnited Defensible 10 Standards provide a structured, engineering-grade

framework for implementing robust and measurable cybersecurity architecture and

engineering practices. The guide outlines the frameworks, principles, methods, and

technical specifications required to design, build, verify, and operate reliable systems.

Developed under the ISAUnited methodology, the standards align with modern

enterprise realities and integrate Security by Design, continuous technical validation,

and resilience-based engineering to address emerging threats. The guide is written for

security architects and engineers, IT and platform practitioners, software and product

teams, governance and risk professionals, and technical decision-makers seeking a

defensible approach that is testable, auditable, and scalable.

This document includes a series of Practitioner Guidance, Cybersecurity Students & Early-
Career Guidance, and Quick Win Playbook callouts.

Practitioner Guidance- Actionable steps and patterns to apply the technical
standards in real environments.

Cybersecurity Student & Early-Career Guidance- Compact, hands-on activities
that turn each section’s ideas into a small, verifiable artifact.

Quick Win Playbook- Immediate, evidence-driven actions that improve posture
now while reinforcing good engineering discipline.

Together, these elements help organizations translate intent into engineered outcomes

and sustain long-term protection and operational integrity.

Page 6 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Foreword

Message from ISAUnited Leadership

Cybersecurity is at a turning point. As digital systems scale, reactive and checklist-

driven practices do not keep pace with adversaries. The ISAUnited position is clear:

security must be practiced as engineered design, grounded in scientific principles,

structured methods, and defensible evidence. Our mission is to professionalize

cybersecurity architecture and engineering with standards that are actionable, testable,

and auditable.

ISAUnited Defensible 10 Standards: First Edition is a practical framework for that shift.

The standards in this book are not theoretical. They translate intent into measurable

specifications, controls, and verification, and enable teams to design and operate

resilient systems at enterprise scale.

About This First Edition

This edition publishes 10 Parent Standards, one for each core domain of security

architecture and engineering. Sub-standards will follow in subsequent editions,

contributed by ISAUnited members and reviewed by our Technical Fellow Society, to

provide focused, technology-aligned detail. Adopting the Parent Standards now

positions organizations for seamless integration of Sub Standards as they are released

on the ISAUnited annual update cycle.

Why “Defensible Standards”

Defensible means the work can withstand technical, operational, and adversarial

scrutiny. These standards are designed to be demonstrated with evidence, featuring

clear architecture, measurable specifications, and verification, so that practitioners can

confidently stand behind their designs.

Page 7 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Contents
Annex C (Normative): D03-Compute, Platform & Workload Security Architecture 8

Section 1. Standard Introduction.. 10

Section 2. Definitions ... 11

Section 3. Scope.. 16

Section 4. Use Case .. 18

Section 5. Requirements (Inputs) .. 19

Section 6. Technical Specifications (Outputs) ... 23

Section 7. Cybersecurity Core Principles ... 28

Section 8. Foundational Standards Alignment ... 30

Section 9. Security Controls .. 32

Section 10. Engineering Discipline .. 35

Section 11. Associate Sub-Standards Mapping ... 39

Section 12. Verification and Validation .. 43

Section 13. Implementation Guidelines ... 47

Appendices .. 53

Appendix A. Engineering Traceability Matrix: ... 53

Appendix B. EP-03 Summary Matrix – Evidence Pack Overview: 56

Page 8 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Annex C (Normative): D03-

Compute, Platform & Workload

Security Architecture

Page 9 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

ISAUnited’s Defensible 10 Standards
Parent Standard: D03-Compute, Platform, & Workload Security Architecture
Document: ISAU-DS-CPW-1000
Last Revision Date: December 2025
Peer-Reviewed By: ISAUnited Technical Fellow Society
Approved By: ISAUnited Standards Committee

Page 10 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Section 1. Standard Introduction

The Compute, Platform & Workload Security Architecture (ISAU-DS-CPW-1000)

establishes the engineering baseline for securing the compute plane end to end:

platform control planes, hypervisors and orchestrators, host operating systems, virtual

machines, containers and their registries, serverless functions, and the automation that

provisions and operates them. As a Parent Standard, it defines common terminology,

scope, requirements (inputs), technical specifications (outputs), and verification and

validation expectations that all sub-standards inherit. The standard remains vendor-

neutral and implementation-agnostic, aligns with recognized foundational frameworks

(NIST, ISO/IEC), and provides normative, testable specifications. The goal is a

defensible, measurable, and auditable posture for platform and workload security

across on-premises, cloud, and hybrid environments.

Objective

The objective of ISAU-DS-CPW-1000 is to secure the entire compute stack—from

platform control planes and host operating systems to virtual machines, containers,

serverless functions, and cloud-native infrastructure components—against evolving

threats. It equips cybersecurity architects and engineers with a structured, defensible

way to engineer security into compute and platform environments that support

enterprise applications, back-end services, and orchestrated workloads.

Emphasis is placed on:

• Hardening control planes, hypervisors, orchestrators, and workloads against
compromise.

• Implementing runtime controls that detect, contain, and respond to threats across
the stack.

• Enforcing segmentation and Zero Trust between platform components,
workloads, and external services.

• Instrumenting hosts, control planes, and workloads to produce actionable
telemetry for continuous monitoring, forensic readiness, and automated
response.

• Automating threat detection, policy enforcement, and compliance validation
through infrastructure as code and policy as code.

• Attesting supply-chain integrity, image provenance, and artifact trust so
unverified components cannot enter production.

By integrating these engineering-focused capabilities, the standard provides a

measurable, defensible framework for securing compute, platform, and workload

environments across hybrid, cloud-native, and on-premises architectures.

Page 11 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Justification

Enterprise compute and platform ecosystems now span virtualization, containers,

serverless computing, orchestration platforms, and cloud-native control planes. These

capabilities deliver agility and scale, yet they expand the attack surface beyond what

perimeter-focused or compliance-only approaches address. The distributed, dynamic,

and ephemeral nature of modern workloads, coupled with the criticality of platform

control planes, demands engineering-grade controls.

Adversaries exploit hypervisor and orchestrator flaws, attempt container breakouts and

privilege escalation, abuse control-plane APIs, and introduce malicious artifacts through

compromised supply chains. Weak workload or platform identity, poor segmentation

between control planes and workloads, and insufficient runtime protections create gaps

that can be exploited. Misconfigurations in orchestration policy, secrets management,

and service-to-service trust boundaries remain leading causes of breaches.

The velocity of DevOps and platform engineering further amplifies risk. Secure

provisioning, configuration enforcement, and validation must be automated and

embedded from the platform layer down to individual workloads. This requires a shift to

engineering-led, vendor-neutral practices that enforce controls-as-code and

continuously validate them.

ISAU-DS-CPW-1000 addresses these realities by combining platform hardening,

workload security, identity and access control, runtime detection and response,

telemetry generation, and supply-chain validation into a cohesive architecture.

Foundational alignment with NIST and ISO/IEC is maintained at the Parent level, while

detailed control mappings to CSA CCM, CIS, and OWASP appear in Section 9 (Security

Controls) and in sub-standards. With structured requirements, measurable outputs, and

rigorous validation, the standard enables practitioners to reduce exploitability, prevent

unauthorized access, and control configuration drift across hybrid, cloud-native, and on-

premises deployments.

Section 2. Definitions

Admission — The control-plane step where a workload specification (for example, pod,
function, VM template) is evaluated before it is allowed to run.

Admission Controller — A policy gate in the platform control plane (for example,
Kubernetes) that validates or mutates workload specifications at admission time to
enforce security and compliance before runtime.

Page 12 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

API Gateway — A control surface that mediates API traffic and enforces authentication,
authorization, rate limiting, schema validation, and logging for platform/administrative
and workload endpoints.

Artifact Integrity — The property that deployable items (images, functions, packages,
VM templates) are unchanged from a verified publisher and build process; enforced
through signing and attestation.

Artifact Signing — Applying a cryptographic signature to a build artifact (image,
package, function) to prove integrity and publisher identity.

Attestation — Cryptographically bound metadata (for example, build provenance,
SBOM digest, policy results) asserting how and by whom an artifact was produced.

BAS (Breach and Attack Simulation) — Automated or semi-automated execution of
adversary-inspired techniques to continuously test whether controls (segmentation,
admission/verify-before-start, detection/response) work as intended in production-like
conditions.

Bastion (Bastion Host) — A hardened administrative access point that mediates
privileged connections to control planes or hosts and enforces MFA, JIT elevation, and
session recording.

Behavioral Analytics — Machine-learning or statistical techniques that model normal
platform/workload behavior to detect meaningful deviations indicative of threats.

Container Runtime Security — Controls applied while containers/pods execute,
including image integrity verification, syscall/process constraints, least-privilege runtime
configuration, network policy, and continuous behavior monitoring.

Control Plane (Platform Control Plane Security) — Orchestration and management
layers (for example, hypervisors, Kubernetes API/etcd, serverless control plane,
management consoles) protected against unauthorized access, misconfiguration, and
exploitation.

Control-Plane Audit (Audit Logging) — Authoritative logging of control-plane
administrative and API activity for investigation, correlation, and evidence.

CSPM (Cloud Security Posture Management) — Continuous assessment of cloud
services and configurations for misconfigurations and policy violations; in CPW, paired
with WSPM to cover platform/workload posture.

Data Plane (Workload/Data Path) — The execution and traffic path for workloads and
services; subject to segmentation, identity-based policy, and transport encryption.

Page 13 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Default-Deny — A policy stance where connections or actions are denied unless
explicitly allowed by rule (applies to network, admission, or API gateways).

Drift (Configuration Drift) — Divergence between the intended, version-controlled
configuration and the running state; must be detected, reconciled, and evidenced.
East–West Traffic — Lateral traffic between workloads or platform components within a
trust zone or data center/cloud; subject to micro-segmentation and identity-based policy.

Egress Allowlist — An explicit set of permitted outbound destinations or services for a
workload, namespace, or zone; all other outbound traffic is denied.

Evidence Pack (EP) — A curated, immutable collection of artifacts (policies, logs,
scans, attestations, reports) tied to a specific requirement or test. For this annex, EP-03
is the Parent-level pack; sub-items use dot suffixes (for example, EP-03.6).

Golden Image (Approved Base Image) — A pre-approved, hardened, and signed base
image (host OS, container base, VM template) tracked with SBOM and patch cadence.

Immutable Infrastructure — An operating model where compute instances and images
are replaced rather than modified in place, reducing drift and improving auditability.

Image Provenance — Cryptographic evidence (signing plus provenance/attestation)
demonstrating an image’s source, build process, and integrity.

Image Registry — A repository that stores and distributes signed images for containers
or VMs and enforces trust policy (for example, allowed publishers, signature/attestation,
immutable tags).

Infrastructure as Code (IaC) — Managing, provisioning, and configuring compute,
platform, and workload resources via code under version control to ensure repeatability
and enforce baselines.

Interface Control Document (ICD) — A structured specification that defines an
interface’s contracts: authentication/authorization model, identity type, data
classification, rate/flow limits, error handling, telemetry, and security invariants.

JIT (Just-in-Time) Access — Time-bounded elevation of privilege with approval and
session capture to minimize standing administrator access.

KEV (Known Exploited Vulnerabilities) — Catalogue of vulnerabilities known to be
exploited in the wild; used to drive mandatory gating and remediation.

Key Management Service (KMS) — Centralized cryptographic key management that
enforces access controls, automated rotation, auditability, and cryptographic agility for
platform/workload use.

Page 14 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

mTLS (Mutual TLS) — A transport security mode where both client and server present
and verify certificates to authenticate and encrypt service-to-service or administrative
paths.

MTTD (Mean Time to Detect) — The average time to detect a security-relevant event or
condition.

MTTC (Mean Time to Contain) — The average time to contain or isolate an identified
incident or policy violation.

MTTR (Mean Time to Recover) — The average time to restore a service or workload to
acceptable operating conditions after an incident, rollback, or remediation.

Namespace (Platform Namespace/Scope) — A logical isolation boundary for workloads
and policies (for example, Kubernetes namespace) used to apply default-deny, egress
allowlists, and per-team controls.

Network Policy (Namespace/Container Network Policy) — Declarative rules that govern
allowed ingress/egress between pods/services within or across namespaces; used to
implement default-deny and allowlists.

PaC (Policy as Code) — Defining and enforcing security and compliance policies as
code so validation occurs automatically in pipelines and at admission/runtime.

PKI (Public Key Infrastructure) — The certificate issuance and trust system used to
manage identities and mTLS within platforms.

Privileged Access Enforcement — Restricting and monitoring elevated operations
through least-privilege role design, JIT elevation, MFA, and session recording.

Quarantine (Security Quarantine) — Automated isolation of a workload, artifact, or
registry namespace upon policy violation or high-severity finding, pending rollback or
remediation.

RBAC / ABAC — Role-Based Access Control and Attribute-Based Access Control;
authorization models used to enforce least privilege for humans, services, and
workloads.

Rollback (Security Rollback) — Automated restoration to a last-known-good signed
image or configuration after a failed gate, policy violation, or incident.

Runtime Protection — Active controls during workload or platform execution that detect
anomalies, prevent exploitation, and contain threats (for example, isolate, kill, or
restart).

Page 15 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Secrets Management — Secure storage, rotation, scoped access, and auditing of
credentials, tokens, and keys used by workloads and platform services; secrets are
never embedded in code or images.

Serverless Function (FaaS) — A managed compute substrate where functions execute
under platform control; in CPW, subject to admission/verify-before-deploy, identity
scoping, private networking, and egress allowlists.

Service Mesh — A communication fabric that provides mTLS, workload identity, policy,
and telemetry for service-to-service traffic.

SIEM / XDR / SOAR — Security Information and Event Management; Extended
Detection and Response; Security Orchestration, Automation, and Response—
platforms used for correlation, detection, and automated response.

SLO (Service Level Objective) — A target value or range for a service metric used to
guide promotion/rollback decisions and operational gates (for example, error rate,
latency, policy-denial rate).

Software Bill of Materials (SBOM) — A manifest of packages and components in an
artifact (image, VM, function) used for provenance, license, and vulnerability analysis.

Threat-Model Delta — A concise PR-level note describing how a proposed change
affects the system’s threat model (new trust boundary, interface, dependency), plus how
the change will be tested and evidenced.

Traffic-Contract Test — A positive/negative test that proves a declared service-to-
service path is permitted while unauthorized paths are blocked, with results captured as
evidence.

Verify-before-Start — A pre-runtime enforcement in which the platform validates
signatures, attestations, provenance, and policy conformance immediately before the
workload starts; non-compliant artifacts are denied.

Verify-on-Pull — A deployment-time enforcement that rejects artifacts lacking valid
signatures/attestations or failing policy checks when they are retrieved from a registry.

Workload Detection and Response (WDR) — Continuous monitoring and protection for
workloads (VMs, containers, serverless) using behavioral analytics and runtime
enforcement to detect, mitigate, and respond to threats in real time.

Workload Identity — Short-lived, cryptographically verifiable identities assigned to
workloads/services for authenticated, authorized, and encrypted interactions within and
across platform boundaries.

Page 16 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Workload Security Posture Management (WSPM) — Continuous assessment and
enforcement of configuration baselines and controls for workloads and platforms to
prevent drift and misconfigurations.

WORM (Write Once, Read Many) Storage — An immutable storage mode used to
preserve logs, audits, and evidence so records cannot be altered or deleted within the
retention window.

Zero Trust Platform & Workload Architecture (ZTPWA) — An architectural pattern that
applies Zero Trust to platform control planes and workloads, enforcing continuous
identity verification and policy at every hop.

Zero Trust Platform & Workload Security — A security approach that requires
continuous authentication, authorization, and validation for all entities (human, service,
workload, platform component) with no implicit trust.

Section 3. Scope

Compute, platform, and workload environments now operate across highly dynamic,

distributed, and interconnected infrastructures. ISAU-DS-CPW-1000 covers the full

compute stack—from platform control planes and host operating systems to virtual

machines (VMs), containers and their orchestrators, serverless functions, and

orchestrated workloads—deployed in on-premises, cloud, and hybrid environments,

including single-cloud, multi-cloud, hybrid-cloud, and traditional data-center

architectures.

The standard sets architectural expectations, engineering practices, and technical

guardrails required to achieve measurable resilience and defensibility across compute

and platform ecosystems. It enables practitioners to anticipate and mitigate

misconfiguration, enforce identity and trust boundaries, validate supply-chain integrity,

and counter evolving threats, while advancing automation, immutable infrastructure, and

cloud-native operations.

Applicability

• All Compute and Platform Service Models: Applies to workloads, platforms,
and services implemented as VMs, containers, serverless functions, hypervisors,
container-orchestration platforms, and managed compute services.

• Enterprise, Government, and Academic Environments: Intended for security,
platform, and infrastructure teams across public and private sectors, research
institutions, and organizations advancing compute and platform security
practices.

Page 17 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Hybrid, Multi-Cloud, and On-Premises Architectures: Addresses the security
challenges of integrating and protecting workloads and platforms across diverse
providers, data centers, and deployment models.

Key Focus Areas

• Platform Control-Plane Security: Protections for orchestration layers,
hypervisors, and management APIs to prevent unauthorized access, abuse, and
misconfiguration.

• Identity and Access Controls: Mechanisms to secure workload, service, and
platform identities; enforce least privilege; and apply Zero Trust across all layers.

• Workload and Platform Segmentation: Isolation strategies, micro-
segmentation, and trust-boundary enforcement to limit lateral movement and
blast radius.

• Compute- and Platform-Native Security Models: Secure DevOps practices,
immutable infrastructure, and automation to maintain security at scale.

• Supply-Chain Integrity and Image Provenance: Deployment of only verified,
trusted artifacts, with controls that detect and block unverified or malicious
components.

• Encryption, Data Protection, and API Security: Robust cryptographic controls,
secure data-lifecycle management, and resilient API protection.

• Continuous Monitoring, Telemetry, and Incident Response: Real-time
observability, automated detection, and rapid response tailored to platform and
workload contexts.

Outcomes

By defining this scope, the standard ensures that compute, platform, and workload
security architectures are:

• Defensible: Built with enforceable boundaries, engineered controls, and
measurable security assurances.

• Measurable: Anchored to outputs that can be validated through continuous
assessment and testing.

• Adaptive: Designed to evolve with technology advances, threat landscapes, and
operational requirements.

• Aligned: Consistent with organizational policy, regulatory mandates, and
industry practices for platform and workload security.

This scope establishes the foundation for resilient, secure, and defensible compute,

platform, and workload environments that protect critical assets, maintain operational

integrity, and enable organizational agility.

Page 18 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Section 4. Use Case

A robust compute, platform, and workload security standard must demonstrate practical

applicability in complex, real-world environments. The following consolidated use case

presents a technical scenario typical of modern enterprises operating across hybrid and

multi-cloud architectures. It highlights common architectural weaknesses, maps them to

targeted technical solutions based on Zero Trust Platform & Workload Architecture

(ZTPWA), and defines measurable outcomes. This integrated approach ensures that

engineering teams can directly align actions with defensible security objectives.

Table C-1:

Use Case

Name

Securing Hybrid & Multi-Cloud Compute, Platform, and Workload Environments

with Zero Trust Platform & Workload Architecture

Objective

Implement ZTPWA to protect platform control planes, workloads, and associated services

from unauthorized access, misconfigurations, and lateral movement attacks.

Scenario

A global enterprise operates across on-premises data centers, AWS, Azure, and Google

Cloud. The organization experiences inconsistent platform and workload access policies,

frequent misconfigurations, and limited visibility across environments. Security teams

detect privilege escalation attempts in control planes, unverified images entering

production, and unmonitored lateral movement between workloads.

Actors

Platform Security Architect, Compute Engineer, IAM & Access Governance Team,

DevOps/Platform Engineering Team, SOC Analysts

Challenges

Identified

• Overprivileged Access: Excessive permissions for platform and service accounts;

misconfigured IAM roles allowing broad access to control planes and workloads.

• Misconfigurations & Vulnerable Artifacts: Inconsistent baselines across VMs,

containers, and orchestrators; deployment of unverified or outdated images.

• Insufficient Segmentation: Flat trust boundaries between workloads, platforms, and

network segments permit excessive lateral movement.

• Telemetry Gaps: Fragmented logging from hosts, control planes, and workloads, with

no unified monitoring or correlation capability.

Technical

Solution

• Identity & Access Hardening: Enforce RBAC/ABAC at platform and workload levels;

require JIT elevation and MFA for privileged operations.

Page 19 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Posture & Configuration Management: Deploy automated, code-based policy

enforcement for baseline compliance across all compute and platform layers.

• Micro-Segmentation & Zero Trust Enforcement: Apply software-defined perimeters,

mutual workload/platform authentication, and strict

• east-west traffic controls.

• Supply Chain Integrity Controls: Require SBOM verification, signed images, and

artifact provenance checks before deployment.

• Centralized Telemetry & Threat Detection: Aggregate platform, workload, and network

telemetry into a unified SIEM/XDR pipeline with automated response playbooks.

Expected

Outcome

• Reduction of platform and workload attack surface by 60% through least-privilege and

JIT access controls.

• 75% reduction in misconfiguration exposure via automated detection and remediation.

• Segmentation prevents unauthorized lateral movement between workloads and

platforms.

• Enhanced visibility enabling SOC teams to detect and respond to threats 40% faster.

• 100% enforcement of artifact verification before production deployment.

Key Takeaways

• Direct mapping of identified risks to engineering solutions enables actionable and
defensible security objectives.

• Zero Trust Platform & Workload Architecture ensures consistent enforcement of
access controls, segmentation, and monitoring across heterogeneous
environments.

• Measurable outcomes provide validation points for continuous optimization and
operational assurance.

This consolidated use case and summary table provide technical teams with an explicit,
actionable reference for aligning compute, platform, and workload security controls with
enterprise risk management and resilience objectives.

Section 5. Requirements (Inputs)

A defensible compute, platform, and workload security architecture is grounded in
clearly defined, actionable inputs. These requirements establish the technical,
procedural, and policy conditions that must be present before implementation begins.
By setting these preconditions, ISAUnited’s Defensible Standards ensure organizations
are prepared for disciplined, engineering-driven security integration.

5.1 Zero Trust Platform & Workload Security

Page 20 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• All access requests—regardless of user, platform component, workload,
device, or location—must be continuously verified before permission is
granted.

• Implement ongoing authentication, dynamic authorization, and continuous
trust validation across platform and workload layers.

• Enforce least privilege by default, and require multi-factor authentication
(MFA) for all privileged actions at both platform and workload levels.

5.2 Platform & Shared Responsibility Model Compliance

• Align security controls explicitly with the shared responsibility model for
each compute platform, orchestrator, or cloud provider.

• Delineate provider-managed versus organization-managed security
functions.

• Maintain procedures to verify the effectiveness of both provider and
organization controls to prevent gaps.

5.3 Automated Security Enforcement

• Use WSPM, infrastructure-as-code (IaC) policy engines, policy-as-code
(PaC) frameworks, and runtime security agents to enforce consistent
security across environments.

• Automate detection and remediation of misconfigurations, policy
violations, and compliance gaps.

• Integrate automated security workflows into CI/CD pipelines.
• Enforce admission controls and verify-on-pull/verify-before-start in pre-

production and production; policy-as-code bundles include registry
allowlists/denylists and artifact signature/attestation checks.

• Pipelines fail closed on unsigned or unattested images, or on failing
admission policies.

• Admission/verification policies cover serverless functions: only signed and
attested packages/layers are deployable; build-time dependencies are
pinned; pipelines fail closed on unsigned or policy-failing functions.

• EP-03.3: policy bundle, function-signing/attestation config, failed-gate
logs.

5.4 Segmentation & Trust Boundary Enforcement

• Design and implement segmentation at platform and workload layers
using software-defined networking, micro-segmentation, and identity-
based access controls.

• Enforce isolation between workloads, services, and control planes to
prevent lateral movement.

• Apply software-defined perimeters and context-aware access controls
based on identity and risk.

• Define default-deny namespace network policies for containers, with
explicit egress allowlists (including DNS); platform management endpoints
are not reachable from workload namespaces.

Page 21 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Serverless functions integrated with private networking; outbound traffic
restricted by egress allowlists; function URLs or public endpoints require
strong authentication and do not bypass policy.

• EP-03.4: function-to-service contract tests, egress-deny events, allowlist
map.

5.5 Data Encryption & Compliance

• Enable encryption by default for all data at rest and in transit (for example,
AES-256, TLS 1.3).

• Align encryption, key management, and data handling with data-
residency, privacy, and compliance requirements.

• Implement centralized KMS with automated key rotation and strict access
controls.

• Deliver secrets via workload identity and a dedicated secrets store;
prohibit secrets in images and plaintext environment variables.

5.6 Supply-Chain Integrity & Artifact Trust

• Require all artifacts (for example, VM images, container images, code
packages) to be signed, verified, and vulnerability-scanned before
deployment.

• Maintain a software bill of materials (SBOM) for all deployable artifacts to
support provenance and compliance.

• Enforce verify-on-pull or verify-before-start so only signed and attested
artifacts with valid policy checks can execute.

• Maintain an approved registry/namespace list; permit only immutable,
approved tags in production (no “latest” or other floating tags).

• Achieve 100 % SBOM coverage for all deployable images and functions;
validate signatures and attestations at pull or start.

• Function environment variables never store plaintext secrets; secrets are
injected at runtime from a dedicated store and protected by KMS;
ephemeral storage encryption is enabled where supported.

• EP-03.5: secret-access policy, rotation logs, env-scan results.

5.7 Administrative Access & Privileged Operations

• Use bastioned administrative access with MFA and just-in-time (JIT)
elevation; prohibit standing administrator roles on platforms and
workloads.

• Enable session recording and command logging for privileged actions on
control planes and hosts.

• Define emergency access procedures with approval, time bounds, and
post-use review.

• Perform cluster/control-plane administration (for example, virtualization
and container-orchestration consoles) only via a bastion with MFA and
JIT; no standing cluster-admin.

Page 22 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Allow direct “exec” into production workloads only with JIT, session
capture, and ticketed justification.

5.8 Baseline & Hardening Standards

• Adopt hardened baselines for hosts/OS, orchestrators, control planes, and
images; define drift-prevention policy and remediation windows.

• Enforce admission control (where applicable) to block non-conformant
workloads at deploy/admission time.

• Maintain a register of approved base images and golden artifacts tied to
SBOMs and signatures.

• Require container baselines: non-root execution with non-zero UID, read-
only root filesystem, minimal capabilities, and defined syscall/capability
profiles; disallow privileged containers and host mounts without approved
exceptions.

• Maintain a golden image catalog for base images with SBOMs,
signatures, and a documented patch cadence.

5.9 Telemetry, Logging & Evidence Readiness

• Define required telemetry (host, control-plane, workload, network) and
ensure immutable log storage with policy-aligned retention.

• Standardize event schemas so SIEM/XDR and §12 V&V can correlate
platform and workload events.

• Establish Evidence Pack conventions (IDs, locations) for scans, policies,
signatures/attestations, and test results referenced by this standard.

• Collect container lifecycle events (create/start/stop), image-pull
provenance, admission denials, and network-policy denials; retain control-
plane audit logs and correlate with workload identity.

• Evidence Packs include registry policy, admission policy,
signing/attestation reports, SBOM coverage, and namespace network-
policy maps.

Practitioner Guidance:

Use these requirements as readiness gates before implementing §6 and scheduling
tests in §12:

• Map each §5.x item to one artifact and one §12 test (for example, 5.6 →
Signing Policy + verify-on-pull test).

• Keep single sources of truth: platform diagrams, PaC/IaC repository, and
golden-image catalog (with SBOM and signatures).

• Assign ownership per gate and record it in the CPW register.
• Baseline before go-live: standing admins (= 0), JIT usage, east–west

default-deny coverage, admission-policy pass rate, SBOM coverage (= 100
%), KMS rotation cadence.

• Fail closed: block deployments for missing MFA/JIT (5.1/5.7), unsigned or
unattested images (5.6), admission violations (5.8), or absent
segmentation/KMS bindings (5.4/5.5).

Page 23 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Enforce admission-time checks and log denials with Evidence Pack IDs;
revalidate gates after major CPW changes and at least quarterly.

Section 6. Technical Specifications (Outputs)

Technical specifications define the concrete, defensible outputs required to satisfy this
standard. Each output area translates policy into measurable, actionable security
outcomes, establishing a robust foundation for secure compute, platform, and workload
protection across cloud-native, hybrid, and enterprise environments.

Outputs must be:

• Measurable: validated by scans, logs, audits, or tests
• Actionable: implementation-ready, not policy slogans
• Aligned: traceable to §5 Requirements and sub-standards

6.1. Identity & Access Security for Platforms and Workloads

• Multi-Factor Authentication (MFA): MFA SHALL be enforced for all
privileged and administrative accounts at platform and workload levels.
Prefer phishing-resistant factors for privileged actions. Privilege elevation
SHALL be Just-in-Time (JIT) with session recording.

• RBAC/ABAC: Roles and attributes SHALL implement least privilege for
humans, services, and workloads. Standing administrator roles SHALL
NOT exist; elevation is time-bound with approval and logging.

• Native IAM Integration: Platform-native IAM and workload-identity
mechanisms SHALL issue short-lived credentials and enforce policy
centrally.

• Privileged Access Operations: Administrative access SHALL traverse a
hardened path (for example, a bastion) with MFA and JIT; commands and
sessions are captured and retained per retention policy.

• Access Reviews: Access reviews SHALL be automated on a defined
cadence; stale and orphaned identities SHALL be removed within 7 days
of detection.

6.2. Platform & Workload Network Security & Segmentation

• Software-Defined Segmentation: L3–L7 segmentation SHALL be
expressed as policy-as-code (peer-reviewed, staged rollout) to isolate
workloads, control planes, and services across environments.

• Private Endpoints & Zero Trust: Sensitive platform/workload
communications SHALL use private endpoints or software-defined
perimeters. Service-to-service traffic on sensitive paths SHALL require
authenticated encryption (for example, mTLS) and identity-based
authorization.

Page 24 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Network Firewalls: Platform-native firewalls with layer-7 controls SHALL
enforce default-deny at trust boundaries. Management planes SHALL be
isolated; administrative access occurs only via a hardened bastion with
MFA and JIT.

• Micro-Segmentation: East–west traffic controls SHALL be
identity/context aware and scoped to least privilege (for example,
namespace/app/role), with egress allowlists for workloads.

• Network Access Controls: Security groups, ACLs, and route policies
SHALL tightly control ingress and egress per workload; changes are
version-controlled and validated pre-deployment.

• Container Network Policy: Workload namespaces SHALL enforce
identity- or label-based network policies for ingress and egress; default-
deny east–west with explicit egress allowlists (including DNS). Platform
management endpoints SHALL NOT be reachable from workload
namespaces.

6.3. Data Protection & Encryption

• Encryption Standards: Data at rest SHALL use AES-256 (or stronger);
data in transit SHALL use TLS 1.3 (or stronger) with approved cipher
suites. Certificates and keys SHALL be rotated automatically per policy.

• Centralized Key Management: A centralized KMS SHALL control key
generation, access, rotation, and auditing with separation of duties.

• Data Classification & Handling: Automated tagging/classification and
lifecycle policies SHALL be applied to workloads and platform storage.

• Compliance Alignment: Cryptographic configurations, retention, and
residency SHALL conform to applicable regulatory and organizational
requirements.

• Platform Integrity (Boot/Runtime Measurements): Where supported,
secure/verified boot and measured boot SHALL be enabled for hosts and
control planes; integrity events SHALL be forwarded to centralized
telemetry and used as gates for workload admission.

6.4. API & Runtime Security

• API Gateways: External and inter-service APIs SHALL be fronted by
gateways that enforce authentication, authorization, rate limiting,
schema/validation, and logging. Anonymous access to sensitive APIs is
prohibited.

• Modern Protocols: OAuth 2.0, OpenID Connect, and JWT-based models
SHALL be used for token-based access where applicable; token lifetimes
are short-lived and scoped.

• Runtime Controls (VMs/Containers/Serverless):
o Artifact Integrity: Artifacts SHALL be signed and attested; verify-

on-pull/verify-before-start SHALL block unsigned, unattested, or
policy-failing artifacts.

o Registry & Admission Policy: Only approved registries and
namespaces SHALL be allowed; admission/verify-before-start

Page 25 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

SHALL block artifacts from unapproved sources or with failing
policy checks.

o Vulnerability Management: Images and functions SHALL be
vulnerability-scanned pre-deploy and on a defined cadence; critical
policy failures block promotion.

o Least-Privilege Execution: Workloads SHALL run with least
privilege (for example, no privileged containers; read-only root
filesystem; minimal capabilities; syscall/process/network policies).

o Serverless Runtime Baseline: Functions SHALL execute with
least privilege (execution role scoped to function), short timeouts
and concurrency limits, minimal permissions to event sources and
destinations, and no public unauthenticated “function URLs” unless
explicitly approved with expiry.

o Function Package Integrity: Deployed function code and layers
SHALL be signed/attested; verify-before-deploy SHALL block
unsigned or policy-failing packages; third-party layers are
quarantined until verified.

o Egress and Interface Policy: Functions running inside private
networking SHALL use identity-based policies and egress
allowlists; direct internet egress is denied unless explicitly approved
with expiry.

o Secrets and Configuration: Secrets SHALL be provided at
invocation via a secrets store and short-lived tokens; configuration
SHALL avoid embedding secrets in environment variables;
ephemeral /tmp use is minimized and not trusted for persistence.

o Telemetry: Capture per-invocation logs and metrics (invocations,
duration, errors, throttles, cold starts) and correlate with identity and
admission decisions in §6.5.

o EP-03.6 / EP-03.21: function-signing policy, verify logs, allowed-
registry/source list, denial events; per-invocation metrics in
SIEM/XDR.

• Container Runtime Security (normative subset):
o Image Baselines: Only approved base images with SBOMs

SHALL be used; tags SHALL be immutable; “latest” or other
floating tags are prohibited in production.

o Allowed Registries: Only approved registries and namespaces
SHALL be permitted; unapproved sources SHALL be blocked at
admission.

o User & Isolation: Containers SHALL run as non-root with a non-
zero UID; privileged containers, hostPID/hostNetwork, and
hostPath mounts are prohibited unless formally approved with
compensating controls and expiration.

o Kernel/Capability Profiles: System-call and capability profiles
SHALL be enforced; dangerous capabilities (for example,

Page 26 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

NET_RAW) SHALL be dropped; writable device access is
prohibited by default.

o Filesystem & Secrets: Root filesystem SHALL be read-only;
writable volumes are scoped to necessity. Secrets SHALL be
delivered via workload identity or a dedicated secrets store—never
baked into images or stored as plain environment variables.

o Resource Limits & Quotas: CPU and memory requests/limits
SHALL be set to constrain blast radius and support reliable
autoscaling and eviction behavior.

o Continuous Scanning: Deployed images SHALL be rescanned on
a defined cadence; high-severity findings trigger automated
quarantine/rollback workflows.

o Runtime Detection: Policy SHALL detect and respond to
container-escape attempts, crypto-mining, reverse shells,
unexpected outbound beacons, and tampering with runtime policy.

• Secrets Management: Secrets, keys, and tokens SHALL be stored in a
dedicated vault, issued short-lived to workloads via identity, and rotated
automatically. Secrets SHALL NOT be embedded in code or images.

• API Threat Detection: Abuse and anomaly detection (for example,
authorization bypass, injection, enumeration) SHALL be monitored with
alerting and response tied to §6.5.

6.5. Monitoring, Detection & Incident Response

• Centralized SIEM/XDR: Host, control-plane, workload, and network
telemetry SHALL be normalized and correlated centrally. Time
synchronization and schema standards are required for correlation.

• Detection Engineering: Behavioral, heuristic, and rules-based detections
(optionally ML-assisted) SHALL cover control-plane abuse, lateral
movement, privilege escalation, and runtime policy violations.

• Automated Response: SOAR/playbooks SHALL isolate or restart
compromised workloads, revoke credentials and keys, quarantine
artifacts/registries, and open tracked incidents with evidence links.

• Immutable Audit Trails: Logs and audit trails SHALL be tamper-evident
(for example, WORM or equivalent) with retention aligned to policy;
access is monitored and auditable.

• Continuous Posture Assessment: WSPM/CSPM/IaC-as-code checks
SHALL continuously assess compliance and drift, with auto-reconciliation
or time-bounded remediation per severity.

• Container Telemetry: Collect container lifecycle events
(create/start/stop), image-pull provenance, policy denials at admission,
syscall/capability violations, and namespace-level network-policy denials;
retain control-plane audit logs and correlate with workload identity.

• Quarantine & Rollback: On policy violation or high-severity finding,
orchestrate automated isolation of the affected pod or workload, revoke
tokens and keys, and roll back to a last-known-good signed image; record
an Evidence Pack ID.

Page 27 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Serverless Telemetry: Collect per-invocation metrics (invocations, errors,
throttles, duration, cold starts) and bind them to function identity, source
package digest, and admission decision; alert on anomalous spikes,
unusual egress, or policy-denial rates.

• EP-03.9: telemetry schema sample, correlation queries (admission →
invocation → egress), alert runbooks.

Practitioner Guidance:

• Begin with a gap analysis against §6 outputs; prioritize control-plane
hardening, identity, segmentation, and artifact trust.

• Encode these outputs as policy-as-code and infrastructure-as-code; enforce
fail-closed gates in CI/CD and at admission/verify-before-start.

• For every §6 control, pair a §12 test and an evidence artifact (for example,
policy exports, attestation reports, segmentation maps, SIEM queries).

• Use staged rollout (canary) and peer review for policy changes; track drift
MTTR, and failed-gate rates as quality signals.

• Train operators on privileged path operations (bastion + JIT + session
capture) and rehearse IR playbooks for control-plane and runtime
compromise scenarios.

Quick Win Playbook:

Title: Verify-Before-Start and Approved Registries (Production)

Objective: Prevent untrusted or tampered artifacts from entering runtime by
enforcing signature and attestation at admission and restricting workloads to
approved registries and namespaces.

Target: Enforce verify-on-pull/verify-before-start and approved registries for
production workloads (§6.4).

Component/System: Admission controller + image registry + workload runtime
(VMs/containers/serverless).

Protects: Control planes and workloads from untrusted or tampered artifacts
entering runtime (supply-chain compromise).

Stops/Detects: Unsigned or unattested images; artifacts from unapproved
registries/namespaces; mutable “latest”/floating tags; signature mismatches at
deploy/start.

Action: Enable signature and attestation enforcement at admission/verify-before-
start; allow only approved registries/namespaces; prohibit floating tags; run a
smoke deploy that attempts (1) a signed and attested image from an approved

Page 28 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

registry (allow) and (2) an unsigned or unapproved-registry image (deny). Ensure
deny/verify events export to centralized telemetry; record owner and review
cadence.

Proof: Policy-as-code commit/diff, admission/verification deny logs, registry
allowlist/denylist, digest list of running images, and signature/attestation reports →
Evidence Pack EP-03.10. Reference Table C-5 (row 5.6).

Metric: 100 % of unsigned, unattested, or unapproved-registry images are denied;
100 % of running images use approved registries and immutable digests;
deny/verify events appear in SIEM/XDR within target MTTD.

Rollback: Revert the admission/policy bundle to the previous commit; if required,
issue a time-bounded exception with owner and expiry; archive new artifacts under
EP-03.10 as superseded.

Section 7. Cybersecurity Core Principles

The following ISAUnited Cybersecurity Core Principles are foundational to the design,

implementation, and ongoing management of secure compute, platform, and workload

security architectures. Each principle guides architectural decisions, technical controls,

and operational practices, ensuring that environments are resilient, measurable, and

engineered to withstand real-world threats.

Table C-2:

Principle Name

Code Applicability to Compute, Platform & Workload Security Architecture

Least Privilege
ISAU-
RP-01

Scope platform and administrative roles, and workload/service identities, to
the minimum required; prohibit standing administration; enforce JIT elevation
with session capture and time bounds.

Zero Trust
ISAU-
RP-02

Continuously verify humans, services, workloads, and platform components;
require identity-based policy for service-to-service calls (for example, mTLS)
and default-deny east–west within clusters.

Defense in Depth
ISAU-
RP-04

Layer controls across control planes, hosts/OS, registries, images, runtime
policy, network segmentation, and telemetry so a single failure cannot
compromise workloads.

Page 29 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Principle Name

Code Applicability to Compute, Platform & Workload Security Architecture

Secure by
Design

ISAU-
RP-05

Encode guardrails as IaC/PaC; enforce admission/verify-before-start; treat
images and policies as versioned artifacts with peer review and staged
rollout.

Minimize Attack
Surface

ISAU-
RP-06

Remove unused services, modules, and capabilities; run containers as non-
root with read-only root filesystem; disallow privileged and host mounts;
restrict administrative paths behind bastions.

Secure Defaults
ISAU-
RP-10

Default to deny (network and admission), encrypt by default (at rest and in
transit), and enforce signed and attested artifacts; any relaxation requires
approved, time-bounded exceptions.

Resilience &
Recovery

ISAU-
RP-14

Design for fault tolerance and rapid rollback: quarantine non-compliant
workloads, automatically roll back to a last-known-good signed image, and
practice control-plane recovery.

Evidence
Production

ISAU-
RP-15

Generate immutable, correlated logs from hosts, control planes, and
workloads; capture admission denials, image provenance, and privileged
sessions for audit and forensics.

Cryptographic
Agility

ISAU-
RP-17

Use centralized KMS with automated rotation; support cipher and protocol
upgrades (for example, TLS 1.3+) and re-issue identities/keys without
downtime.

Protect
Confidentiality

ISAU-
RP-18

Enforce strong encryption, scoped access to secrets via identity-bound
tokens, and provenance-aware image handling to prevent sensitive data
exposure.

Protect
Availability

ISAU-
RP-20

Ensure high availability for control planes and critical workloads; apply
resource limits and quotas to contain noisy neighbors and preserve capacity
during incidents.

Practitioner Guidance:

• Integrate these principles into §6 outputs (e.g., RP-01 ↔ §6.1 JIT/MFA; RP-
06 ↔ §6.4 container least-privilege; RP-15 ↔ §6.5 immutable logs).

Page 30 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Validate adherence via §12 tests: privilege-escalation simulations,
admission/verify-before-start denials, east–west block tests, and rollback
drills.

• Teach “principle → control → evidence” mapping in runbooks so teams can
show defensibility on demand.

Section 8. Foundational Standards Alignment

The Compute, Platform & Workload Security Architecture (ISAU-DS-CPW-1000) must
align closely with globally recognized foundational standards to ensure interoperability,
regulatory compliance, and a consistent risk management approach. While ISAUnited
Defensible Standards provide detailed technical guidance and engineering rigor,
alignment with established frameworks is critical for auditability, industry acceptance,
and seamless integration into existing security and compliance programs.

Table C-3. Foundational standards relevant to this Parent Standard:

Framework

Standard ID Reference Focus

NIST CSF 2.0

Cybersecurity Framework core outcomes are organized into Govern,
Identify, Protect, Detect, Respond, and Recover, with a governance overlay
for risk and program alignment.

NIST
SP 800-53
Rev. 5

Baseline security and privacy controls relevant to platforms, workloads,
identity, boundary protection, and continuous monitoring in enterprise and
hybrid environments.

NIST SP 800-190

Containerized application security: image hardening, verification,
orchestrator configuration, and runtime protection for containers and
platforms.

NIST SP 800-207

Zero Trust architecture principles and reference models for continuous
verification, least privilege, identity-centric policy, and segmentation across
platforms and workloads.

ISO/IEC 27001:2022

ISMS requirements that underpin governance and assurance; CPW
implementations should not conflict with the organization’s ISMS controls
and risk treatment.

ISO/IEC 27002:2022

Page 31 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Framework

Standard ID Reference Focus

Information security controls (93 controls across organizational, people,
physical, and technological themes) are used to implement ISMS controls in
practice.

ISO/IEC 27017

Cloud services security guidance, including shared-responsibility alignment
and platform/workload control expectations for cloud and hybrid
deployments.

ISO/IEC
27033
(series)

Network security concepts and design guidance supporting east–west and
north–south protections for platform/workload segmentation and secure
communications.

NOTE: ISAUnited Charter Adoption of Foundational Standards.

Per the ISAUnited Charter, the institute formally adopts the International Organization
for Standardization/International Electrotechnical Commission (ISO/IEC) and the
National Institute of Standards and Technology (NIST) as its foundational standards
bodies, consistent with their public encouragement of organizational adoption. Parent
Standards align to ISO/IEC and NIST for architectural grounding and auditability, and
this alignment flows down to Sub-Standards as invariants and minimum requirements
that may be tightened but not weakened. ISAUnited does not restate or speak on behalf
of ISO/IEC or NIST; practitioners shall consult the official publications and terminology
of these organizations, verify scope and version currency against the latest materials,
and implement controls in a manner consistent with ISAUnited security invariants and
the requirements of this standard.

Future Sub-Standard Integration

As detailed sub-standards are developed under ISAU-DS-CPW-1000, specific
mappings to NIST and ISO/IEC controls will be incorporated at the control level.
Mappings to other frameworks (e.g., CSA CCM, CIS) will appear in §9 for clarity and in
sub-standards to guide implementation in diverse technical contexts.

Practitioner Guidance:

ISAUnited Defensible Standards are designed to complement and extend globally
recognized standards. Practitioners should:

• Map sub-standard technical controls and §6 specifications to NIST/ISO
for foundational alignment and audit traceability (including CSF 2.0’s
Govern function for program governance).

Page 32 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Use NIST/ISO as authoritative references during architecture reviews,
risk assessments, and compliance evaluations.

• Maintain alignment as part of continuous improvement so architecture
remains defensible, measurable, and adaptable to evolving risks and
regulatory demands.

• Place CSA CCM/CIS mappings in §9 (Security Controls) and within sub-
standards to keep foundational versus control frameworks clearly
separated.

Section 9. Security Controls

This section identifies the technical control families and specific control references
directly supported or enforced by the Compute, Platform & Workload Security
Architecture (ISAU-DS-CPW-1000). These controls explicitly link architectural and
engineering guidance to recognized cybersecurity frameworks, ensuring traceability,
auditability, and consistent implementation across diverse environments.

Purpose and Function

Security controls translate the standard's architectural intent into actionable, measurable
safeguards. They provide the tactical foundation to enforce confidentiality, integrity,
availability, authentication, authorization, and auditability across compute, platform, and
workload environments.

By explicitly mapping to widely accepted frameworks such as the CSA Cloud Controls
Matrix (CCM), CIS Controls v8, and OWASP standards, ISAUnited ensures:

• Clear alignment with recognized industry best practices and regulatory
frameworks.

• Interoperability across varied operational contexts.
• Consistency and reusability of controls in sub-standards aligned to this Parent

Standard.

These mappings also enable engineers and auditors to measure and validate the
defensibility of implementations aligned with this standard.

Implementation Guidance

Standard developers and practitioners must:

• Reference at least three technical controls from authoritative cybersecurity
frameworks.

Page 33 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Provide framework name, acronym, control ID, and a concise, actionable
description.

• Align selected controls to the technical specifications (§6 outputs) and core
principles (§7).

• Select concrete, implementation-level controls rather than high-level statements.

Table C-4. Control Mappings for Compute, Platform & Workload Security

Framework

Control
ID

Control Name / Description

CIS Controls
v8

13.1

Protect Network Infrastructure — Enforce identity-based segmentation for
platforms/workloads; default-deny east–west; restrict admin paths to bastions
per §6.2.

CIS Controls
v8

14.4

Centralize Security Event Logging — Aggregate host, control-plane, and
workload telemetry in SIEM/XDR; include admission denials and image-verify
events per §6.5.

CIS Controls
v8

4.3

Secure Configuration of Assets and Software — Apply hardened baselines to
hosts, orchestrators, and images; prevent drift with PaC/IaC gates per
§6.2/§6.4.

CIS Controls
v8

5.1

Inventory of Service Accounts — Maintain and constrain platform/workload
service identities; rotate credentials; remove orphans per §6.1.

CIS Controls
v8

6.5

Access Control Management — Require MFA and JIT for privileged
operations; prohibit standing admin roles; record sessions per §6.1.

CIS Controls
v8

8.2

Audit Log Management — Preserve immutable audit trails (WORM/equivalent)
with time sync and schema standards for correlation per §6.5.

CSA CCM

DSI-03

Data Security & Information Lifecycle — Encrypt data at rest (AES-256) and in
transit (TLS 1.3+); manage keys centrally via KMS per §6.3.

CSA CCM IAM-05

Identity & Access Management — Enforce least privilege and MFA for
administrative and privileged platform/workload operations per §6.1.

CSA CCM IAM-09

Identity & Access Management — Strong authentication and short-lived tokens
for platform/workload access; remove stale identities per §6.1.

Page 34 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Framework

Control
ID

Control Name / Description

CSA CCM IVS-06

Virtualization & Network Security — Implement micro-segmentation and
isolation for hypervisors, clusters, and namespaces per §6.2.

OWASP
ASVS

V2.1

Authentication Architectural Requirements — Strong authentication for
platform/cluster/admin APIs and workload endpoints; token scope/TTL per
§6.4.

OWASP Top
10

A02:2021

Cryptographic Failures — Enforce approved ciphers/protocols, KMS rotation,
and secret handling policies (no secrets in images/plain env) per §6.3/§6.4.

OWASP Top
10

A04:2021

Insecure Design — Encode guardrails as IaC/PaC; verify before
start/admission to prevent non-conformant workloads per §6.4.

NOTE: Use of External Control Frameworks.

ISAUnited maps to external control frameworks to provide alignment and traceability,
but does not speak on behalf of those organizations. Practitioners shall consult and
follow the official practices, recommendations, and implementation guidance of the
Center for Internet Security (CIS), the Cloud Security Alliance (CSA), and the Open
Worldwide Application Security Project (OWASP) when applying controls. Always verify
control identifiers, scope, and version currency against the publishers’ latest materials.
Where wording differs, use the framework’s official documentation while maintaining
consistency with ISAUnited security invariants and this standard's requirements.

Additional References

As platform and workload security evolves, Sub-Standard Authors may add controls
from other frameworks (e.g., CIS Benchmarks, NIST SP 800 series) to maintain
relevance.

Sub-Standard Expectations

Sub-standards developed under ISAU-DS-CPW-1000 must:

• Select and enforce explicit technical controls relevant to their focus area (e.g.,
IAM, runtime protection, segmentation).

Page 35 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Provide detailed mappings of these controls to verification, implementation, and
operational requirements.

• Justify and document deviations from referenced control families to maintain
transparency and defensibility.

Section 10. Engineering Discipline

This section defines the architectural thinking, rigorous engineering processes, and
disciplined operational behaviors required to implement the Compute, Platform &
Workload Security Architecture (ISAU-DS-CPW-1000). ISAUnited’s Defensible
Standards are not compliance checklists; they are engineered systems, grounded in
systems thinking, critical reasoning, and Verification & Validation (V&V), that produce
measurable, auditable, defensible outcomes across platforms, control planes, and
workloads.

10.1 Purpose & Function

Purpose. Establish a repeatable, auditable way of working that integrates
systems thinking, lifecycle controls, adversary-aware design, and measurable
outcomes for compute, platform, and workload security.

Function in D10S. Parent Standards set expectations and invariants. Sub-
Standards convert them into controls as code, test specifications, and evidence
artifacts embedded in delivery and operations.

10.2 Systems Thinking
Goal: Make the CPW system legible end-to-end; components, interfaces,
dependencies, and failure modes—so controls sit where risk actually manifests.

10.2.1 System Definition & Boundaries
• Declare system purpose, scope, stakeholders, and in-/out-of-scope

assets (control planes, hosts/OS, VMs, containers, serverless,
registries, KMS, vaults, SIEM/XDR).

• Model trust zones, segmentation, and interconnects
(clusters/nodes/namespaces; VPC/VNet/subnets; service
endpoints/private links; administrative paths/bastions).

10.2.2 Interfaces & Contracts

• Maintain Interface Control Documents (ICDs) for every
interconnection (platform/administrative APIs, admission
controllers, registries, service mesh, queues, data stores, identity
providers).

• For each interface, specify: authentication/authorization model,
identity type (human/service/workload), data classification, rate/flow

Page 36 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

limits, error handling, telemetry, and security invariants (for
example, “verify-before-start on artifact pull”).

10.2.3 Dependencies & Emergent Behavior

• Map shared services (KMS, DNS, IAM patterns, logging, time sync)
and blast radius per dependency.

• Identify emergent risks from composition (for example, benign
configuration A + default B → unsigned image admitted; mesh
policy + permissive egress → lateral movement).

10.2.4 Failure Modes & Safeguards

• For critical paths, document failure modes (misconfiguration, drift,
overload, credential abuse, artifact-trust failure, control-plane
compromise) and safeguards (deny by default, least privilege,
egress allowlists, circuit breakers, canary deploys, immutable
infrastructure, verify-on-pull/verify-before-start).

• Treat security invariants as non-negotiable requirements (for
example, “no public ingress to management plane,” “unapproved
registries denied at admission,” “secrets not embedded in images”).

Required Artifacts (minimum): Context diagram with trust boundaries; interface
map with ICDs; dependency and blast-radius matrix; invariants register.

10.3 Critical Thinking
Goal: Replace assumptions with explicit reasoning that survives review, attack,
and audit.

10.3.1 Decision Discipline
• Use Architecture Decision Records (ADRs): problem → options →

constraints/assumptions → trade-offs → decision → invariants →
test/evidence plan (who, when, how measured).

10.3.2 Engineering Prompts

• Boundaries: What is the CPW system? Where are the trust
boundaries and why?

• Interfaces: What must always be true at each interface
(invariants)? How do we test it?

• Adversary: Which attack techniques are credible here (for
example, control-plane abuse, container escape, supply-chain
path)? What is the shortest attack path?

• Evidence: What objective signals prove this control works today
and after the change?

• Failure: When this fails, does it fail safe? What is the operator’s
next action?

Page 37 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Required Artifacts (minimum): ADRs; assumptions and constraints log;
evidence plan per decision.

10.4 Domain-Wide Engineering Expectations
Secure System Design

• Define CPW boundaries (clusters/namespaces, control
planes/administrative paths, registries, KMS/vaults, telemetry sinks).

• Validate boundaries and trust relationships through structured reviews
using §10.2 artifacts.

Implementation Philosophy — “Built in, not bolted on.”

• Integrate controls at design time and pipeline/admission time; avoid post-
hoc patching.

• Express controls as policies/configuration as code bound to invariants in
§10.2.4 (for example, verify-before-start, default-deny east–west, non-root
execution).

Lifecycle Integration

• Embed CPW controls into DevSecOps (IaC/PaC), change management,
and immutable deployments.

• Enforce version-controlled reviews with required ADRs and evidence
updates for every change.

Verification Rigor (V&V)

• Combine automated checks (policy validation, IaC scanning,
admission/segmentation tests, runtime guardrails) with manual tests
(penetration testing, adversary emulation).

• Require continuous validation in pipelines and runtime monitoring tied to
invariants (for example, deny unsigned images; block unapproved
egress).

Operational Discipline

• Monitor for drift and unauthorized change; auto-remediate where safe with
time-bounded exceptions.

• Maintain pre-approved playbooks for control-plane incidents, key rotation,
artifact quarantine/rollback, and namespace isolation.

10.5 Engineering Implementation Expectations

• Policy/Configuration as Code. Manage network/segmentation, admission,
identity, cryptography, and logging policies as code under version control
with peer review and provenance.

• Structured Enforcement Pipelines. CI/CD gates for unit/policy tests →
security-integration tests → verify-on-pull/verify-before-start →
canary/blue-green → rollback.

• Explicit Security Boundaries. Maintain diagrams and ICDs; continuously
validate posture (e.g., default-deny, approved registries) through targeted
audits and smoke tests.

• Automated Security Testing. Integrate IaC scanning, configuration
validation, secrets detection, dependency/image checks, and adversary
emulation before production.

Page 38 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Traceable Architecture Decisions. Link ADRs to controls, tests, and
evidence; update ADRs and evidence on every change request.

Required Artifacts (minimum): Controls-as-code repository; pipeline policy
gates; boundary/ICD set; automated test results; evidence ledger (see §10.7 and
§12).

10.6 Sub-Standard Alignment (inheritance rules)
Sub-Standards must operationalize this discipline with domain-specific detail:

• Platform & Workload Identity (for example, ISAU-DS-CPW-1030). Identity
as code; least-privilege baselines; short-lived tokens; automated policy
validation; pipeline enforcement; peer review and automated tests before
deploy.

• Zero Trust Segmentation (for example, ISAU-DS-CPW-1040). Identity-
centric network policy; default-deny east–west; private endpoints;
admission-time checks; breach-and-attack simulation for lateral-movement
paths.

• Software Supply-Chain Integrity & Provenance (for example, ISAU-DS-
CPW-1080). End-to-end signing/attestation; verify-on-pull/verify-before-
start; exception handling with sunset; automated verification in CI and at
deploy.

10.7 Evidence & V&V (what proves it works)
Establish an Evidence Pack per system containing:

• Design Evidence: diagrams with trust boundaries, ICDs, invariants
register, ADRs.

• Build Evidence: IaC/PaC repositories; signed artifacts/attestations;
pipeline logs; test results.

• Operate Evidence: runtime policy decisions; drift reports; control
telemetry (for example, admission denials, image-verify events,
capability/syscall violations); incident and rollback records.

• Challenge Evidence: red-team/penetration-test reports; adversary-
emulation outcomes; remediation closure with re-test.

• Each control requires objective pass/fail criteria, a specified test
frequency, a designated responsible owner, and a defined retention policy.
Map Evidence Pack IDs into §12 traceability.

10.8 Example: Sub-Standard Discipline Alignment (Zero Trust
Segmentation)

Scope: ISAU-DS-CPW-1040 Zero Trust Segmentation for CPW
Design: Define identity and trust zones (clusters/namespaces, administrative
paths, service identities); enumerate invariants (for example, “default-deny
namespace east–west,” “platform management endpoints unreachable from
workloads”).
Implement: Express segmentation and admission policies as code; enforce

Page 39 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

identity-based authorization and mTLS; deny unapproved egress and
unapproved registries.
V&V: Automated policy tests; namespace smoke tests for lateral movement;
admission denials for unapproved artifacts; periodic adversary emulation focused
on east–west bypass.
Operate: The Evidence Pack includes policy repository history, gate results,
admission/deny logs, segmentation maps, incident records, and closed-loop
remediation.

Section 11. Associate Sub-Standards Mapping

Purpose of Sub-Standards

ISAUnited Defensible Sub-Standards are detailed, domain-specific extensions of the
Compute, Platform & Workload Security Architecture (ISAU-DS-CPW-1000). Each Sub-
Standard delivers:

• Granular technical guidance tailored to specialized CPW security domains.

• Actionable implementation strategies translating architectural intent into
practical operational controls.

• Precise validation methodologies ensuring outputs are measurable and
auditable.

• Alignment with foundational architectural principles and technical
specifications of the Parent Standard.

Sub-Standards bridge the gap between broad architectural direction and the detailed
technical requirements necessary for robust engineering, validation, and auditing across
platform, control plane, and workload security.

Scope and Focus of CPW Sub-Standards

Sub-Standards under ISAU-DS-CPW-1000 will address specialized topics, including:

Platform & Workload Hardening & Secure Configuration
Example: ISAU-DS-CPW-1010: Hardened Configuration for Platform & Containerized
Workloads

• Prescribes CIS, cloud-provider, and orchestrator benchmarks.
• Requires automated scanning in CI/CD pipelines to detect vulnerabilities and
enforce baselines.
• Mandates removal of unnecessary packages and disabling privileged/root
access.
• Enforces immutable infrastructure and drift-prevention controls.

Page 40 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Runtime Threat Detection & Response
Example: ISAU-DS-CPW-1020: Runtime Threat Detection for Platforms & Workloads

• Specifies runtime security agent deployment for control planes, VMs,
containers, and serverless.
• Defines behavioral anomaly detection for process, network, and file activity.
• Outlines automated response actions (isolation, restart) upon suspicious
activity.
• Integrates with SIEM/SOAR for centralized detection and response.

Identity & Access Management (IAM)
Example: ISAU-DS-CPW-1030: Platform & Workload Identity Lifecycle Management

• Details least-privilege IAM role/policy engineering for platform services and
workloads.
• Requires automated credential provisioning, rotation, and revocation.
• Mandates integration with platform-native identity providers and service
meshes.
• Establishes periodic access reviews and orphan-privilege detection.

Zero Trust Segmentation
Example: ISAU-DS-CPW-1040: Zero Trust Segmentation for CPW Environments

• Provides segmentation methodologies based on identity, risk, and context.
• Requires continuous verification of all platform-workload communications.
• Enforces policy-driven micro-segmentation (e.g., SDPs, mesh/mTLS).
• Integrates posture-based dynamic access controls.

Data Protection & Encryption
Example: ISAU-DS-CPW-1050: CPW Data Encryption & Key Management

• Mandates encryption of all data at rest and in transit (AES-256, TLS 1.3).
• Requires centralized key management with automated rotation and strict
access controls.
• Includes compliance checks for residency/privacy laws.
• Defines secure key backup/recovery and audit logging.

Infrastructure as Code (IaC) Governance
Example: ISAU-DS-CPW-1060: Secure Infrastructure as Code for CPW

• Requires all infrastructure/platform definitions as code with version control and
peer review.
• Mandates automated IaC scans pre-deployment.
• Enforces policy-as-code checks in CI/CD.
• Documents change management and rollback processes.

API & Secrets Management
Example: ISAU-DS-CPW-1070: Secure API & Secrets Management for CPW

• Requires API gateways with integrated authentication, authorization, and rate
limiting.
• Mandates secret/credential storage in secure vaults with rotation.

Page 41 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Specifies runtime controls for APIs (input validation, logging).
• Outlines API abuse monitoring and automated alerting.

Software Supply-Chain Integrity & Provenance
Example: ISAU-DS-CPW-1080: Artifact Integrity, Signing & Attestation for CPW

• Requires signing/attestation for images/functions; verify-on-pull/verify-before-
start at admission.

• Maintains approved registry/namespace lists; prohibits floating tags in
production.

• Stores SBOMs with artifacts; blocks deployment on missing/invalid
provenance.

• Defines exception handling with sunset dates and automated verification in CI
and at deploy.

Table C-5. Example Future Sub-Standards

Sub-Standard
ID

Sub-Standard Name

Focus Area

ISAU-DS-CPW-

1010

Hardened Configuration for Platform &
Containerized Workloads

Platform & Workload Hardening

ISAU-DS-CPW-

1020

Runtime Threat Detection for Platforms &
Workloads

Threat Detection & Response

ISAU-DS-CPW-

1030

Platform & Workload Identity Lifecycle
Management

IAM

ISAU-DS-CPW-

1040

Zero Trust Segmentation for CPW Environments Zero Trust Segmentation

ISAU-DS-CPW-

1050

CPW Data Encryption & Key Management Data Protection & Encryption

ISAU-DS-CPW-

1060

Secure Infrastructure as Code for CPW IaC Governance

Page 42 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Sub-Standard
ID

Sub-Standard Name

Focus Area

ISAU-DS-CPW-

1070

Secure API & Secrets Management for CPW API & Runtime Security

ISAU-DS-CPW-

1080

Software Supply-Chain Integrity & Provenance for
CPW

Supply-Chain Integrity

Each Sub-Standard Will Specify:

• Inputs (Requirements): Preconditions for implementation.
• Outputs (Technical Specifications): Measurable engineering deliverables.
• Validation Methodologies: Testing and verification methods.
• Implementation Guidelines: Practical, scalable, and secure deployment practices.

Development and Approval Process:

• Open Season Submission: Contributors submit proposed sub-standards aligned
with CPW-1000 objectives.

• Technical Peer Review: Evaluation by the Technical Fellow Society for validity,
accuracy, and applicability.

• Approval and Publication: Approved sub-standards receive formal versioning and
publication as authoritative extensions of CPW-1000.

Future Development (Q4 2025 Onward)

• Practitioners can expect detailed technical guidance aligned with CPW-1000.
• Each sub-standard will map to core principles and technical outputs defined in

CPW-1000.
• Contributions invited via the Open Season process.

Practitioner Guidance:

As the suite expands, every sub-standard will inherit the engineering discipline,
validation rigor, and architectural alignment needed for consistent, defensible, and
auditable CPW implementations. Ensure each proposed sub-standard: (1) ties
every output to a §12 test and Evidence Pack ID (EP-03.x), and (2) references the
§6 controls it operationalizes (for example, admission/verify-before-start,
segmentation, secrets handling, telemetry).

Page 43 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Section 12. Verification and Validation

The effectiveness and defensibility of a compute, platform, and workload security

architecture must be continuously verified and validated using structured, engineering-

grade assessments. While detailed test requirements for specific technologies will live in

CPW sub-standards, the Parent establishes the gold-standard expectations below.

Verification confirms the environment has been implemented according to this
standard’s Requirements (Inputs, §5) and Technical Specifications (Outputs, §6).

Validation proves the environment performs under real operating conditions and
withstands adversarial testing.

Core Verification Activities

• Confirm §6 controls exist and are enforced in target environments: bastioned
administrative paths with MFA/JIT; identity- and label-based micro-segmentation;
verify-on-pull/verify-before-start; approved registries/namespaces; secrets
delivered via identity; TLS 1.3/mTLS; immutable logging.

• Review host/OS, orchestrator, image, and policy baselines against adopted
benchmarks and enterprise baselines; verify admission policies deny non-
conformant workloads.

• Verify integration points and contracts: registry ↔ admission controller, mesh ↔
workload identity, KMS/vault ↔ workloads, SIEM/XDR ↔ control-plane audit—
confirm that controls do not disrupt business-critical services.

• Peer review architecture diagrams, trust/segmentation maps, admission/network
policies, registry policies, and control mappings for completeness and accuracy.

Core Validation Activities

• Perform adversarial testing—penetration testing, red teaming, and
BAS/emulation—focused on control-plane abuse, container escape, supply-chain
and admission bypass, lateral movement, and egress governance.

• Validate runtime resilience using automated and manual methods aligned to
credible attack paths (for example, deny unsigned images at admission; block
unapproved egress; quarantine/rollback on high-severity runtime findings).

• Test operational resilience: rollback to a last-known-good signed image, cluster
failover of critical services, incident response for registry/key compromise, and
privilege-escalation drills on administrative paths.

• Measure performance against targets such as MTTD, MTTC, MTTR, failed-gate
rate (admission/CI), drift MTTR, and signature/SBOM coverage.

Page 44 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Required Deliverables

1. Test Plans and Procedures — Scope, tooling, and methods for verification and
validation phases.

2. Validation Reports — Pass/fail results, residual risk ranking, and prioritized
remediation.

3. Evidence Artifacts — Policy exports; admission/deny logs; image
signatures/attestations; SBOM reports; capability/syscall violations; segmentation
maps; control-plane audit logs; SIEM/XDR detections—each labeled with an
Evidence Pack ID (EP-03.x) and referenced in Table C-5.

4. Corrective Action Plans — Time-bounded remediation for findings that must be
closed prior to acceptance.

Common Pitfalls to Avoid

• Treating penetration testing as a check-the-box exercise rather than adversary-
aware validation of CPW invariants (for example, admission denials, default-deny
east–west, non-root execution).

• Missing evidence: tests run, but artifacts are not versioned, immutable, or linked
to Table C-5/EP-03.x.

• Skipping continuous validation in dynamic or high-risk areas (new clusters, new
image families, policy changes).

Table C-6. Traceability Matrix: Requirements (§5) to Verification/Validation (§12)
and Technical Specifications (§6):

Requirement

ID

Requirement
(summary)

Verification (build-
correct)

Validation (works-right)
Related

Technical
Specs

5.1

Zero Trust
Platform &
Workload
Security

• MFA/JIT enforced;

RBAC/ABAC
applied

• session capture
configured

Phishing/token-replay
requires step-up; implicit-trust
lateral movement is blocked

§6.1 Identity &
Access; §6.2
Segmentation

5.2

Platform &
shared
responsibility
alignment.

• Responsibility
matrix approved

• provider vs.
organization
controls monitored

Spot checks confirm provider
defaults (for example, storage
encryption) and organization
controls (for example, key
rotation) effective

§6.3 Data &
Crypto; §6.5
Monitoring/IR

5.3
Automated
security
enforcement

• WSPM/IaC/PaC
gates active

• admission/verify-
before-start
enabled

Unsigned/unattested image
denied in staging/production
within the target window

§6.4 API &
Runtime; §6.5
Monitoring/IR

Page 45 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Requirement

ID

Requirement
(summary)

Verification (build-
correct)

Validation (works-right)
Related

Technical
Specs

5.4
Segmentation &
trust boundary
enforcement

• Network and
namespace
policies deployed

• private endpoints
set

• BAS shows east–west
block rate meets target

• unapproved service-to-
service calls blocked

§6.2
Segmentation

5.5
Data encryption
& compliance

• Encryption on by
default

• centralized KMS
with rotation

• data
classified/tagged

• Encrypted restore drill
passes

• transport scans meet
policy

• key hygiene checks pass

§6.3 Data &
Crypto

5.6
Supply-chain
integrity &
artifact trust

• Sign/attest all
artifacts

• SBOM present
• registry allowlists

in place

• Pipeline rejects unknown

provenance
• production SBOM

coverage = 100 %
• admission blocks

unapproved
tags/registries

§6.4 API &
Runtime; §6.5
Monitoring/IR

5.7

Administrative
access &
privileged
operations

• Bastion + MFA/JIT
• session capture
• no standing

cluster-admin

• Privilege-escalation
simulations require JIT
approval

• 0 unrecorded privileged
sessions in the sample

§6.1 Identity;
§6.2
Segmentation

5.8
Baseline &
hardening
standards

• Host/OS,

orchestrator
• image baselines

active
• admission blocks

non-conformant

• Spot checks show non-
root, read-only filesystem,
minimal caps, syscall/cap
profiles

• exceptions time-bounded

§6.4 Runtime

5.9

Telemetry,
logging &
evidence
readiness

• Required

fields/schema
present

• immutable storage
• control-plane audit

on

• Correlation (admission
denial ↔ image
provenance ↔ workload
identity) succeeds

• integrity checks pass

§6.5
Monitoring/IR

Evidence guidance

Page 46 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Attach plans and procedures; approved diagrams; policy-as-code repositories;

admission/verify and registry policies; CI/CD logs; scan/signature/attestation/SBOM

reports; segmentation maps; control-plane audit logs; KMS rotation logs; SIEM queries

and detections. Label each set with an EP-03.x identifier and reference the

corresponding row in Table C-5.

How to use the matrix

• Plan: ensure each §5 item has at least one verification and one validation activity.

• Execute: record the EP-03.x ID for each row when the activity completes.

• Review: when a requirement or §6 specification changes, update linked activities

and §6 references to maintain end-to-end traceability.

Practitioner Guidance:

Treat §12 as a continuous engineering function.

• Map every §5 requirement to one verification and one validation in Table C-
5, each with a unique EP-03.x.

• Exercise adversary-informed tests that match CPW: control-plane abuse,
container escape, registry poisoning, privilege escalation, and lateral
movement.

• Track MTTD/MTTC/MTTR, failed-gate rates, drift MTTR, and
signature/SBOM coverage; adjust controls and policies accordingly.

• Re-validate management-plane isolation, admission denials, and default-
deny east–west after every major change window.

Quick Win Playbook:

Title: Namespace Default-Deny and Egress Allowlists (Production)

Objective: Reduce lateral-movement and exfiltration risk by enforcing default-deny
east–west policy and tightly scoped egress allowlists for a single production
namespace.

Target: Enforce default-deny east–west and allowlisted egress for one production
namespace (§6.2).

Page 47 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Component/System: Kubernetes namespace (cluster networking and policy
engine).

Protects: Workloads in the namespace from lateral movement and unsanctioned
outbound calls.

Stops/Detects: Internal reconnaissance/scanning, unauthorized service-to-service
calls, data exfiltration, command-and-control beacons over open egress.

Action: Apply namespace policies (default-deny ingress/egress); permit only
DNS/KMS/approved services; run a lateral-movement/egress smoke test (blocked
vs allowed paths).

Proof: Policy manifests, deny-event logs, and smoke-test outputs → Evidence
Pack EP-03.71 (and reference Table C-5, row 5.4).

Metric: Unauthorized lateral/egress attempts are denied and logged within target
MTTD; allowlisted traffic passes.

Rollback: Restore the previous policy commit; remove temporary allow entries;
record any exception with owner and expiry.

Section 13. Implementation Guidelines

This section does not prescribe vendor-specific tactics. Parent Standards are stable,

long-lived architectural foundations. Here, we define how sub-standards and delivery

teams must translate the Parent’s intent into operational behaviors that are testable,

automatable, and auditable for Compute, Platform & Workload (CPW) environments.

Purpose of This Section in Sub-Standards

Sub-standards must use Implementation Guidelines to:

• Translate architectural expectations from the Parent Standard into enforceable
run-time and pipeline behaviors (for example, admission/verify-before-start,
default-deny east–west).

• Provide platform-agnostic practices that improve adoption, reduce failure, and
align with ISAUnited’s defensible design philosophy.

• Highlight common failure modes and how to prevent them with measurable gates
and checks.

• Offer repeatable patterns (as code) that enforce controls, trust models, and
engineering discipline across control planes, hosts/OS,
containers/VMs/serverless, and telemetry.

Page 48 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Open Season Guidance for Contributors

Contributors developing sub-standards Must:

• Align all guidance with the strategic posture in this Parent Standard.
• Avoid vendor/product terms; express controls as requirements, tests, and

evidence.
• Include lessons learned (what fails, why, and how the test proves it).
• Focus on repeatable engineering patterns, not one-offs.
• Provide a minimal Standards Mapping (Spec/Control → NIST/ISO clause from §8

→ Evidence Pack ID EP-03.x).

Technical Guidance

A. Organizing Principles (normative)
1. Everything as code — Policies for segmentation, admission/verify-before-

start, identity/cryptography, logging/telemetry, pipelines, and runbooks Must
be version-controlled, peer-reviewed, and promoted on protected branches.

2. Gated change — Every merge and deployment Must pass non-bypassable
security gates (for example, block unsigned images, deny unapproved
registries, require non-root pods) tied to acceptance criteria from §6 and §12.

3. Immutable, reproducible releases — No manual policy or node changes post-
build; releases Must be reproducible and verified at deploy/admission.

4. Least privilege & JIT — Pipeline identities, automation runners, and
administrators Must use scoped permissions with time-bounded elevation;
break-glass is exceptional and fully audited.

5. Environment parity — Staging Must mirror production controls
(authentication/authorization, egress, TLS/mTLS, logging schema, admission
policies) so test results are predictive; drift Must be monitored and reconciled.

B. Guardrails by Pipeline Stage (normative)

1. Pre-commit / local

• Secrets scanning and signed commits required.

• Pre-commit hooks Should run linters and policy checks for IaC/PaC
and network/admission definitions.

2. Pull request (PR) / code review

• CODEOWNERS approval required; record a Threat-Model Delta for
significant changes.

• IaC/PaC gate (or equivalent) for segmentation, identity, cryptography,
logging, egress, and admission baselines; Critical findings = 0.

• Include evidence pointers in the PR (planned §12 tests and EP-03.x ID
stubs).

3. Build & package

Page 49 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Deterministic artifacts (pinned versions; no ad-hoc fetch at deploy);
artifacts signed/attested.

• Integrity verified before promotion; review transitive dependencies for
pipeline components.

4. Pre-deploy / release

• Configuration-drift detection against approved baselines; change
approvals “as code.”

• Progressive rollout (staged/canary) for network and admission policies
with health SLOs and automatic rollback.

• Negative/positive traffic-contract tests for inter-service flows; egress
allowlist tests per namespace/zone.

5. Deploy & runtime

• TLS 1.3 at edges; mTLS for service-to-service/administrative paths where
required; certificates managed via PKI/KMS with rotation.

• Verify-on-pull / verify-before-start for images/functions; allow only
approved registries/namespaces; prohibit floating tags in production.

• Namespace default-deny; explicit egress allowlists; runners/automation
isolated with restricted outbound.

• Unified logging schema (timestamp, actor, action, resource, result,
trace_id, control_id, env); logs to immutable storage with authenticated
time sync.

• Management-plane isolation with bastion + MFA/JIT + session recording.

6. Post-deploy validation & operations

• Continuous validation (BAS/adversary-emulation scenarios) scheduled;
failover/DR drills; rollback to last-known-good signed image on high-
severity findings.

• Track Security SLOs: target MTTD/MTTC/MTTR, segmentation block-rate,
admission failed-gate rate, drift MTTR, signature/SBOM coverage.

• Auto-generate an Evidence Pack per release (policy diffs, validation
results, admission/deny logs, image-verify events, segmentation maps,
drift reports, ADR links).

C. Identity, Secrets, and Keys (normative alignment to §6)

• Use KMS for key storage; define issuance/rotation/revocation; maintain
service/workload identity inventories.

• Use short-lived credentials for pipelines and bastions; scope secrets to
job/environment; redact in logs.

• No secrets in repositories or images; inject at runtime; full auditability of access.

D. Supply-Chain Integrity (normative)

• Deploy only signed, verified configurations and images from trusted sources;
restrict registries/repositories and namespaces.

Page 50 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

• Quarantine and verify third-party artifacts (scripts, modules); enforce license and
integrity checks.

• Separate build and deploy identities; forbid production writes from build jobs;
enforce admission deny for unknown provenance.

E. Measurement & Acceptance (aligned to §6 and §12)

• mTLS coverage for designated paths meets target; certificate inventory is current
with no expirations inside the policy window.

• Zone/namespace egress: default-deny enforced; allowlisted destinations only;
exceptions time-bounded with approvals.

• Admission baselines: non-root UID, read-only root filesystem, minimal
capabilities; privileged/host mounts disallowed unless approved with expiry.

• Logging & evidence: authenticated time sync; required fields present; retention
immutable; each change linked to an Evidence Pack ID (EP-03.x) tying §5 → §6
→ §12.

Common Pitfalls (and the engineered countermeasure)

1. Pipelines as suggestions → Enforce non-bypassable gates; block
merges/releases on fails; store failing artifacts as proof.

2. One-time scanning → Treat checks as gates with thresholds; require coverage
for changed items and admission/verify events.

3. Manual hot-fixes/drift → Detect and reconcile drift; forbid out-of-band edits;
require ADRs and rollback plans.

4. Open egress / shared runners → Isolate runners; restrict outbound; allowlist per
zone/namespace.

5. Management-plane exposure → Bastion-only with MFA/JIT; block direct access
from production subnets.

6. Weak cryptography / stale certificates → Enforce TLS 1.3/mTLS where required;
rotate and monitor via PKI/KMS.

7. Incomplete logging/time → Enforce unified schema, authenticated time sync,
immutable retention.

8. No evidence → Every release Must have an Evidence Pack ID with linked tests
and results.

ISAUnited encourages organizations to utilize these guidelines as foundational

references for continuous improvement. Although detailed technical instructions and

controls will be elaborated in subsequent sub-standards, consistent application of these

guidelines will significantly enhance the cloud security posture and ensure operational

resilience.

Page 51 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Practitioner Guidance:

• Treat these guidelines as operational defaults; exceptions require written
justification and time-bounded compensating controls.

• Map each practice to a §5 readiness input, a §6 output, and a §12 test;
assign an EP-03.x for traceability.

• Maintain a single source of truth (diagrams, policies, repositories); review
quarterly or after major architectural change.

• Enforce fail-closed CI/CD and admission gates on missing MFA/JIT,
segmentation/admission policies, encryption settings, or PaC checks.

• Record owners and approvers for every change; require two-person review
for privileged changes.

• Capture before/after diffs and attach them to the Evidence Pack to support
verification and audits.

Quick Win Playbook:

Title: Management-Plane Isolation with Bastion and JIT

Objective: Eliminate direct access to platform control planes, require bastion-
mediated MFA and time-bounded JIT elevation, and record every privileged
session for audit and forensics.

Target: Enforce management-plane isolation with bastion + MFA/JIT + session
capture for one platform/control plane (§6.1, §6.2).

Component/System: Control-plane administrative paths (cluster API,
hypervisor/management consoles).

Protects: Management interfaces from direct exposure and credential-only
compromise.

Stops/Detects: Direct API hits from production/workload subnets, stolen-credential
reuse without step-up, unrecorded privileged activity.

Action: Deny direct administrative access from restricted networks; force bastion
path; disable standing admin; smoke test: direct attempt = deny, bastion + JIT =
allow and record.

Proof: Access-policy diff, deny log for direct attempt, bastion/JIT configuration
snapshot, and session-recording excerpt → Evidence Pack EP-03.93 (reference
Table C-5, row 5.7).

Metric: 100 % of privileged sessions traverse the bastion with MFA/JIT; 0 direct
management-plane connections from restricted networks; 100 % of privileged

Page 52 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

sessions recorded.

Rollback: Restore the previous access policy from version control under a time-
bounded exception; retain artifacts in EP-03.93 as superseded.

Page 53 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Appendices

Appendix A. Engineering Traceability Matrix:

Re
q
ID

Requireme
nt (Inputs)

(§5)

Technical

Specificatio
ns

(Outputs)
(§6)

Core
Principles

(§7)

Control
Mappin
gs (§9)

Verification – Build
Correct (§12)

Validation –
Works Right

(§12)

Eviden
ce

Pack ID

5.1

Zero Trust

Platform &

Workload

Security

§6.1 Identity

& Access

Security;

§6.2

Segmentatio

n

RP-02 Zero

Trust; RP-

01 Least

Privilege

CIS 6.5;

CSA

CCM

IAM-05 /

IAM-09

MFA/JIT enforced;

RBAC/ABAC applied;

session capture

configured

Phishing/token-

replay requires

step-up; implicit-

trust lateral

movement

blocked

EP-03.3

5.2

Platform &

Shared

Responsibil

ity

Alignment

§6.3 Data

Protection &

Crypto; §6.5

Monitoring &

IR

RP-05

Secure by

Design; RP-

15

Evidence

CIS 4.3;

CSA

CCM

DSI-03

Responsibility matrix

approved; provider vs

org controls monitored

Spot checks

confirm provider

defaults (e.g.,

encryption) and

org controls

(e.g., key

rotation)

effective

EP-03

5.3

Automated

Security

Enforceme

nt

§6.4 API &

Runtime

Security;

§6.5

Monitoring &

IR

RP-10

Secure

Defaults;

RP-12

Security as

Code

CIS 4.3;

CIS

13.1;

CSA

CCM

IVS-09

WSPM/IaC/PaC gates

active;

admission/verify-

before-start enabled

Unsigned/unatte

sted image

denied in

stage/prod; auto-

remediation

meets target

window

EP-03.6

5.4

Segmentati

on & Trust

Boundary

Enforceme

nt

§6.2

Segmentatio

n

RP-04

Defense in

Depth; RP-

06 Minimize

Attack

Surface

CIS

13.1;

CSA

CCM

IVS-06

Network & namespace

policies deployed;

private endpoints set

BAS shows east-

west block rate

meets target;

unapproved

service-to-

service calls

blocked

EP-03.4

Page 54 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Re
q
ID

Requireme
nt (Inputs)

(§5)

Technical

Specificatio
ns

(Outputs)
(§6)

Core
Principles

(§7)

Control
Mappin
gs (§9)

Verification – Build
Correct (§12)

Validation –
Works Right

(§12)

Eviden
ce

Pack ID

5.5

Data

Encryption

&

Complianc

e

§6.3 Data

Protection &

Encryption

RP-18

Protect

Confidential

ity; RP-19

Integrity

CSA

CCM

DSI-03

Encryption on by

default; KMS rotation +

key hygiene checks

Encrypted

restore drill

passes;

transport scans

meet policy;

certificate/key

hygiene

validated

EP-03.5

5.6

Supply-

Chain

Integrity &

Artifact

Trust

§6.4 API &

Runtime

Security;

§6.5

Monitoring &

IR

RP-05

Secure by

Design; RP-

10 Secure

Defaults

CIS 4.3;

OWASP

ASVS

V2.1;

CSA

CCM

IVS-09

Signing/attestation

validated; SBOM

present; registry

allowlists verified

Pipeline rejects

unknown

provenance;

admission blocks

unapproved

registries/tags;

SBOM coverage

= 100%

EP-03.8

5.7

Administrati

ve Access

&

Privileged

Operations

§6.1 Identity

& Access;

§6.2

Segmentatio

n

RP-01

Least

Privilege;

RP-02 Zero

Trust; RP-

10 Secure

Defaults

CIS 6.5;

CSA

CCM

IAM-09

Bastion + MFA/JIT

enforced; session

capture validated

Privilege-

escalation

simulations

require JIT; 0

unrecorded

privileged

sessions

EP-03.3

5.8

Baseline &

Hardening

Standards

§6.4

Runtime

Security

RP-06

Minimize

Attack

Surface;

RP-10

Secure

Defaults

CIS 4.3;

OWASP

A04:202

1

Host/OS/orchestrator/i

mage baselines active;

admission blocks non-

conformant workloads

Runtime checks

confirm non-root,

read-only FS,

minimal caps,

syscall/cap

profiles;

exceptions

expire

EP-03.1

Page 55 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Re
q
ID

Requireme
nt (Inputs)

(§5)

Technical

Specificatio
ns

(Outputs)
(§6)

Core
Principles

(§7)

Control
Mappin
gs (§9)

Verification – Build
Correct (§12)

Validation –
Works Right

(§12)

Eviden
ce

Pack ID

5.9

Telemetry,

Logging &

Evidence

Readiness

§6.5

Monitoring &

IR

RP-15

Evidence

Production;

RP-20

Availability

CIS

14.4;

CSA

CCM

DSI-03

Required

fields/schema present;

immutable storage

validated

Correlation

succeeds

(admission

denial ↔ image

provenance ↔

workload

identity); integrity

checks pass

EP-03.2

Page 56 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Appendix B. EP-03 Summary Matrix – Evidence Pack Overview:

Layer

EP

Identifier

Purpose Evidence Categories Included

Parent EP EP-03

Serves as the master Evidence Pack for
the D03 Parent Standard. Stores
platform-wide compute, host,
orchestrator, and workload architecture
evidence; golden images; invariants;
and global V&V artifacts supporting §§5,
6, 10, and 12.

• Compute/platform architecture
diagrams
• Cluster/topology maps (control-
plane, nodes, namespaces)
• Trust boundaries & segmentation
maps
• Invariants register
• Interface Control Documents (ICDs)
• Golden image catalog & SBOM
coverage
• Admission/verify-before-start
policies
• Control-plane audit logs and
configuration exports
• Parent-level V&V evidence (Table
C-6)

Sub-EP EP-03.1
Supports future Sub-Standard CPW-
1010: Hardened Configuration for
Platform & Containerized Workloads.

• Host/OS baselines
• Hardened image baselines
• CIS/orchestrator benchmark outputs
• Drift detection logs
• Admission denials for baseline
violations

Sub-EP EP-03.2
Supports future Sub-Standard CPW-
1020: Runtime Threat Detection &
Response.

• Runtime agent telemetry
• Behavioral anomaly detections
• Quarantine/rollback events
• Syscall/capability violation logs
• Policy enforcement evidence

Sub-EP EP-03.3
Supports future Sub-Standard CPW-
1030: Platform & Workload Identity
Lifecycle Management.

• Workload/service identity
assignments
• Key/credential issuance logs
• JIT/MFA privileged access evidence
• Identity drift detection reports
• Access review outcomes

Sub-EP EP-03.4
Supports future Sub-Standard CPW-
1040: Zero Trust Segmentation for
CPW Environments.

• Namespace/app-level network
policies
• East–west block test results
• Micro-segmentation maps

Page 57 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Layer

EP

Identifier

Purpose Evidence Categories Included

• Private endpoint enforcement
evidence
• BAS/ATT&CK segmentation tests

Sub-EP EP-03.5
Supports future Sub-Standard CPW-
1050: CPW Data Encryption & Key
Management.

• TLS/mTLS enforcement scans
• KMS rotation logs
• Key usage audit trails
• Encryption configuration evidence
• Data classification/tagging proof

Sub-EP EP-03.6
Supports future Sub-Standard CPW-
1060: Secure Infrastructure-as-Code
(IaC) Governance.

• IaC repos & policy-as-code
validation
• IaC scan reports
• Drift detection and remediation logs
• Pipeline gates (fail-closed) evidence

Sub-EP EP-03.7
Supports future Sub-Standard CPW-
1070: Secure API & Secrets
Management for CPW.

• API gateway configs
• Authentication/authorization logs
• Secret vault access logs
• Serverless secret-delivery evidence
• Rotated secret/credential audit data

Sub-EP EP-03.8
Supports future Sub-Standard CPW-
1080: Software Supply-Chain Integrity &
Provenance.

• Image signatures/attestations
• SBOM coverage reports
• Registry allowlist evidence
• Verify-before-start logs
• Denials of unsigned artifacts

Sub-EP
(Expansion)

EP-03.9+

Additional child Evidence Packs
reserved for future sub-standards (for
example, workload anomaly detection,
elasticity-safe controls, platform DR).

• Will inherit the same EP structure
and add new domain-specific
evidence categories as CPW sub-
standards mature

Page 58 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

Adoption References

NOTE: ISAUnited Charter Adoption of External Organizations.

ISAUnited formally adopts the work of the International Organization for Standardization

/ International Electrotechnical Commission (ISO/IEC) and the National Institute of

Standards and Technology (NIST) as foundational standards bodies, and the Center for

Internet Security (CIS), the Cloud Security Alliance (CSA), and the Open Worldwide

Application Security Project (OWASP) as security control–framework organizations.

This adoption aligns with each organization’s public mission and encourages use by

practitioners and institutions. ISAUnited incorporates these organizations into its charter

so that every Parent Standard and Sub-Standard is grounded in a common, defensible

foundation.

a) Foundational Standards (Parent level).

ISAUnited adopts ISO/IEC and NIST as foundational standards organizations.

Parent Standards align with these bodies for architectural grounding and

auditability, and extend that foundation through ISAUnited’s normative, testable

specifications. This alignment does not supersede ISO/IEC or NIST.

b) Security Control Frameworks (Control level).

ISAUnited adopts CIS, CSA, and OWASP as control framework organizations.

Control mappings translate architectural intent into enforceable technical controls

within Parent Standards and Sub-Standards. These frameworks provide

alignment at the implementation level rather than at the foundational level.

c) Precedence and scope.

Foundational alignment (ISO/IEC, NIST) establishes the architectural baseline.

Control frameworks (CIS, CSA, OWASP) provide enforceable mappings.

ISAUnited’s security invariants and normative requirements govern

implementation details while remaining consistent with the adopted

organizations.

d) Mapping.

Each cited control mapping is tied to a defined output, an associated verification

and validation activity, and an Evidence Pack ID to maintain end-to-end

traceability from requirement to control, test, and evidence.

e) Attribution.

ISAUnited cites organizations by name, respects attribution requirements, and

conducts periodic alignment reviews. Updates are recorded in the Change Log

with corresponding evidence.

f) Flow-downs.

Page 59 of 59

Obsolete and withdrawn documents should not be used; please use replacements.

(Parent → Sub-Standard). Parent alignment to the International ISO/IEC and

NIST flows down as architectural invariants and minimum requirements that Sub-

Standards must uphold or tighten. Parent-level mappings to CIS, CSA, and

OWASP flow down as implementation control intents that Sub-Standards must

operationalize as controls-as-code, tests, and evidence. Each flow-down shall

reference the Parent clause, the adopted organization name, the Sub-Standard

clause that implements it, the associated verification/validation test, and an

Evidence Pack ID for traceability. Any variance requires a written rationale,

compensating controls, and a time-bounded expiry recorded with an Evidence

Pack ID.

Change Log and Revision History

Review Date Changes Committee Action Status

December

2025

Standards

Revision
Standards Committee

Publication Pending

November

2025

Standards

Submitted

Technical Fellow

Society

Peer review Pending

October 2025
Standards

Revision

Task Group ISAU-

TG39-2024

Draft submitted Complete

December

2024

Standards

Development

(Parent D01)

Task Group ISAU-

TG39-2024

Draft complete Complete

