TTTTTTTTTTTTTTTTTT

Defensible 10

Annex J (Normative):
D10-DevSecOps &
Secure SDLC
Engineering

Technical Standards

Standards Committee
1-14-2026

Page 1 of 67

© 2026 ISAUnited.org. Non-commercial use permitted under CC BY-NC. Commercial
integration requires ISAUnited licensing.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 2 of 67

About ISAUnited

The Institute of Security Architecture United is the first dedicated Standards
Development Organization (SDO) focused exclusively on cybersecurity architecture and
engineering through security-by-design. As an international support institute, ISAUnited
helps individuals and enterprises unlock the full potential of technology by promoting
best practices and fostering innovation in security.

Technology drives progress; security enables it. ISAUnited equips practitioners and
organizations across cybersecurity, IT operations, cloud/platform engineering, software
development, data/Al, and product/operations with vendor-agnostic standards,
education, credentials, and a peer community—turning good practice into engineered,
testable outcomes in real environments.

Headquartered in the United States, ISAUnited is committed to promoting a global
presence and delivering programs that emphasize collaboration, clarity, and actionable
solutions to today's and tomorrow's security challenges. With a focus on security by
design, the institute champions integrating security into every stage of architectural and
engineering practice, ensuring robust, resilient, and defensible systems for
organizations worldwide.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 3 of 67

Disclaimer

ISAUnited publishes the ISAUnited Defensible 10 Standards Technical Guide to provide
information and education on security architecture and engineering practices. While
efforts have been made to ensure accuracy and reliability, the content is provided “as
is,” without any express or implied warranties. This guide is for informational purposes
only and does not constitute legal, regulatory, compliance, or professional advice.
Consult qualified professionals before making decisions.

Limitation of Liability

ISAUnited - and its authors, contributors, and affiliates - shall not be liable for any direct,
indirect, incidental, consequential, special, exemplary, or punitive damages arising from
the use of, inability to use, or reliance on this guide, including any errors or omissions.

Operational Safety Notice

Implementing security controls can affect system behavior and availability. First,
validate changes in non-production, use change control, and ensure rollback plans are
in place.

Third-Party References

This guide may reference third-party frameworks, websites, or resources. ISAUnited
does not endorse and is not responsible for the content, products, or services of third
parties. Access is at the reader’s own risk.

Use of Normative Terms (“Must”, “Should”)

e Must: A mandatory requirement for conformance to the standard.

e Must Not: A prohibition; implementations claiming conformance shall not perform
the stated action.

« Should: A strong recommendation; valid reasons may exist to deviate in
particular circumstances, but the full implications must be understood and
documented.

Acceptance of Terms

By using this guide, readers acknowledge and agree to the terms in this disclaimer. If
you disagree, refrain from using the information provided.

For more information, please visit our Terms and Conditions page

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

https://www.isaunited.org/terms-and-conditions

Page 4 of 67

License & Use Permissions

The Defensible 10 Standards (D10S) are owned, governed, and maintained by the
Institute of Security Architecture United (ISAUnited.org).

This publication is released under a Creative Commons Attribution—NonCommercial
License (CC BY-NC).

Practitioner & Internal Use (Allowed):

e You are free to download, share, and apply this standard for non-commercial use
within your organization, departments, or for individual professional, academic, or
research purposes.

e Attribution to ISAUnited.org must be maintained.

e You may not modify the document outside of Sub-Standard authorship workflows
governed by ISAUnited, excluding the provided Defensible 10 Standards
templates and matrices.

Commercial Use (Prohibited Without Permission):

e Commercial entities seeking to embed, integrate, redistribute, automate, or
incorporate this standard in software, tooling, managed services, audit products,
or commercial training must obtain a Commercial Integration License from
ISAUnited.

To request permissions or licensing:
info@isaunited.org

Standards Development & Governance Notice

This standard is one of the ten Parent Standards in the Defensible 10 Standards (D10S)
series. Each Parent Standard is governed by ISAUnited’s Standards Committee, peer-
reviewed by the ISAUnited Technical Fellow Society, and maintained in the Defensible
10 Standards GitHub repository for transparency and version control.

Contributions & Collaboration

ISAUnited maintains a public GitHub repository for standards development.
Practitioners may view and clone materials, but contributions require:

e ISAUnited registration and vetting

e Approved Contributor ID

« Valid GitHub username
All Sub-Standard contributions must follow the Defensible Standards Submission
Schema (D-SSF) and are peer-reviewed by the Technical Fellow Society during the

annual Open Season.
Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 5 of 67

Abstract

The ISAUnited Defensible 10 Standards provide a structured, engineering-grade
framework for implementing robust and measurable cybersecurity architecture and
engineering practices. The guide outlines the frameworks, principles, methods, and
technical specifications required to design, build, verify, and operate reliable systems.

Developed under the ISAUnited methodology, the standards align with modern
enterprise realities and integrate Security by Design, continuous technical validation,
and resilience-based engineering to address emerging threats. The guide is written for
security architects and engineers, IT and platform practitioners, software and product
teams, governance and risk professionals, and technical decision-makers seeking a
defensible approach that is testable, auditable, and scalable.

This document includes a series of Practitioner Guidance, Cybersecurity Students & Early-
Career Guidance, and Quick Win Playbook callouts.

@ Practitioner Guidance- Actionable steps and patterns to apply the technical
b standards in real environments.

Cybersecurity Student & Early-Career Guidance- Compact, hands-on activities
<P that turn each section’s ideas into a small, verifiable artifact.

m Quick Win Playbook- Immediate, evidence-driven actions that improve posture
il now while reinforcing good engineering discipline.

Crr—

Together, these elements help organizations translate intent into engineered outcomes
and sustain long-term protection and operational integrity.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 6 of 67

Foreword
Message from ISAUnited Leadership

Cybersecurity is at a turning point. As digital systems scale, reactive and checklist-
driven practices do not keep pace with adversaries. The ISAUnited position is clear:
security must be practiced as engineered design, grounded in scientific principles,
structured methods, and defensible evidence. Our mission is to professionalize
cybersecurity architecture and engineering with standards that are actionable, testable,
and auditable.

ISAUnited Defensible 10 Standards: First Edition is a practical framework for that shift.
The standards in this book are not theoretical. They translate intent into measurable
specifications, controls, and verification, and enable teams to design and operate
resilient systems at enterprise scale.

About This First Edition

This edition publishes 10 Parent Standards, one for each core domain of security
architecture and engineering. Sub-standards will follow in subsequent editions,
contributed by ISAUnited members and reviewed by our Technical Fellow Society, to
provide focused, technology-aligned detail. Adopting the Parent Standards now
positions organizations for seamless integration of Sub Standards as they are released
on the ISAUnited annual update cycle.

Why “Defensible Standards”

Defensible means the work can withstand technical, operational, and adversarial
scrutiny. These standards are designed to be demonstrated with evidence, featuring
clear architecture, measurable specifications, and verification, so that practitioners can
confidently stand behind their designs.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 7 of 67

Contents

Section 1. Standard INtroduCtion...............coii i 10
Section 2. DefinitioNScoeeie e 11
7= Tex (o] o G TS Tolo] o 1= YR PSSP 15
SECHON 4. USE CASE ... oot e e e ettt a e e e e e e e e eetan e e eeees 18
Section 5. Requirements (INPULS)oooiriiiii 21
Section 6. Technical Specifications (OULPULS)ouveiiiiiiiiiic e 24
Section 7. Cybersecurity Core PrinCiples.........coveeeiiiiiiiiee e 29
Section 8. Foundational Standards Alignment...............ccc 31
Section 9. Security CONLrOISccooiiiiiiie e 34
Section 10. Engineering DiSCIPliNe ..o 38
Section 11. Associate Sub-Standards Mapping.........cccooeeeviiiiiiiiiiie e 43
Section 12. Verification and Validation (TestS)uceeviiiiiiiiiiiicce e 47
Section 13. Implementation GUIAElINEScoovuiiiiiiiii e, 52
Y o] o= g T [T 1= O ESPPPRP 59

Appendix A: Engineering Traceability Matrix (ETM).........ccoeeiiiiiiiiiiiiieeeeeeeee, 59

Appendix B: Evidence Pack MatriXccoouiiiiiiiiiiiicecee e 62

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 8 of 67

Annex J (Normative):
D10-DevSecOps & Secure SDLC
Engineering

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 9 of 67

ISAUnited’s Defensible 10 Standards

Parent Standard: D10-DevSecOps & Secure SDLC Engineering
Document: ISAU-DS-DSS-1000

Last Revision Date: January 2026

Peer-Reviewed By: ISAUnited Technical Fellow Society
Approved By: ISAUnited Standards Committee

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 10 of 67

Section 1. Standard Introduction

The DevSecOps and Secure SDLC Engineering Parent Standard establishes the
architectural expectations and engineering discipline required to build and operate
software with validated security at delivery speed. It defines ISAUnited’s position on
securing source code, pipelines, artifacts, and runtime promotion across contemporary
compute environments. The standard also serves as the authoritative foundation for all
related sub-standards, whose technical requirements and verification methods derive
from it.

The document presents a structured and defensible model for secure software design
and delivery. It positions security as an engineering activity expressed in code,
continuously validated, and supported by measurable evidence at each release stage.
The standard provides engineers with a clear framework for designing, implementing,
and governing secure delivery systems. This standard governs the enforcement of
delivery and the production of evidence. Secure coding and application design
requirements are defined in the Application Security parent standard.

Objective

This Parent Standard embeds security by design throughout the software lifecycle,
including planning, design, coding, build, testing, release preparation, deployment, and
post-deployment operations. Its objective is to enable teams to deliver software that
withstands adversarial conditions without sacrificing delivery velocity. To achieve this,
the standard defines the architectural patterns and engineering controls needed to:

1. Express policies, infrastructure configurations, and tests as code and subject
them to the same review and validation practices as application code

2. Enforce non-bypassable security gates within CI/CD workflows

3. Validate artifact integrity and provenance through SBOMs, signatures, and
attestations

4. Incorporate application security testing and threat modeling early in development
and sustain them throughout delivery

5. Maintain operational safety through progressive delivery, automated rollback,
and verifiable promotion criteria

Justification

Modern software delivery pipelines frequently encounter recurring failure modes that
traditional compliance guidance does not address. Dependency chains, build systems,

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 11 of 67

and registries remain frequent points of compromise, necessitating signed artifacts,
attestations, and verifiable provenance. Secrets embedded in code, images, or
pipelines create avenues for identity misuse, necessitating short-lived credentials,
centralized issuance, and full auditability. Infrastructure-as-code misconfigurations and
platform drift introduce exploitable conditions unless policy-as-code is used to evaluate
and block violations during build and deploy stages. API-centric architectures expose
authorization weaknesses and token misuse risks that necessitate continuous testing,
rather than a one-time review at release.

Delivery speed without engineering safeguards converts pipelines into rapid distribution
channels for security defects. To remain defensible, organizations require a standard
that specifies observable outputs, repeatable verification methods, and release
evidence that withstands technical scrutiny. This Parent Standard establishes the
engineering model and provides the structural backbone from which domain sub-
standards, such as API security, supply chain integrity, policy enforcement for laC, and
runtime protection, derive specific and testable requirements.

Evidence

Evidence Packs (EPs) provide the proof layer for adopting this Parent Standard. For
Domain 10, the Evidence Pack repository is EP-10 (D10) and is organized to mirror the
sections that drive traceability and adoption:

EP-10.1 Requirements (Inputs)

EP-10.2 Technical Specifications (Outputs)
EP-10.3 Foundational Standards

EP-10.4 Control Mappings

EP-10.5 Verification and Validation activities.

This structure links architectural intent in Section 5 to measurable implementation in
Section 6, and then to Verification and Validation in Section 12, enabling organizations
to demonstrate conformance through repeatable, time-bound artifacts rather than
declarations.

Section 2. Definitions

These definitions ensure a consistent understanding and interpretation across
ISAUnited members, implementers, and peer reviewers, supporting defensible

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 12 of 67

engineering and implementation practices. Where possible, definitions align with
industry-recognized terminology from NIST, ISO, and ISAUnited’s internal frameworks
and methodologies.

Admission control — Deploy-time enforcement that evaluates artifacts, configuration, and
policy compliance before promotion is permitted.

Admission controller — The enforcement component that performs admission control
checks and rejects non-compliant artifacts or deployments.

Application and API security testing — Negative and positive tests validating
authentication, authorization, and token handling for APIs and services, used in this
standard as release enforcement signals.

Architecture Decision Record (ADR) — A structured, versioned record of an architectural
decision, rationale, and consequences, linked to change records and Evidence Pack
references.

Artifact signing — Cryptographic signing of artifacts and associated metadata, with
verification enforced during deployment.

Breach and attack simulation (BAS) — Adversary simulation used to validate detection
coverage and operational response behaviors.

Broken function level authorization (BFLA) — An API authorization failure class that
occurs when functions are accessible without proper authorization checks.

Broken object level authorization (BOLA) — An API authorization failure class that
occurs when object-level access is not enforced correctly.

Broken object property level authorization (BOPLA) — An API authorization failure class
that occurs when access to sensitive object properties is not enforced correctly.

Canary deployment — A progressive delivery pattern where a small subset receives a
new version first, with measured rollback criteria.

CAP_SYS_ADMIN — A privileged Linux capability that provides broad administrative
power and is prohibited for hardened containers in this standard.

Common vulnerability scoring system (CVSS) — An industry standard for scoring
vulnerability severity used in classification and gating thresholds.

Common vulnerabilities and exposures (CVE) — An industry taxonomy for enumerating
publicly known vulnerabilities.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 13 of 67

Common weakness enumeration (CWE) — An industry taxonomy for enumerating
weakness classes.

Continuous delivery or continuous deployment (CD) — The promotion and deployment
portion of CI/CD that publishes and deploys artifacts into environments with admission
checks, promotion criteria, and rollback controls.

Continuous integration (Cl) — The build and test portion of CI/CD, typically executed on
pull requests and merges to validate code, dependencies, and infrastructure definitions.

Continuous integration and continuous delivery (CI/CD) — Automated workflows that
build, test, and promote changes through defined stages, with gates and evidence
produced at merge and deploy boundaries.

Container hardening — Security posture for build and run images, including non-root
execution, minimized base images, restricted Linux capabilities, seccomp or AppArmor
profiles, read-only root filesystem where feasible, and resource limits.

CODEOWNERS - A repository rule set that assigns required reviewers for defined
paths and enforces ownership-based approval.

Deterministic build — A build process that produces stable outputs from defined inputs
and eliminates non-deterministic sources such as unpinned dependencies or variable
build metadata.

DevSecOps — An engineering discipline that expresses security as code across
planning, build, test, release, and runtime workflows, enforcing non-bypassable gates
and producing release-ready evidence.

Drift detection — Automated identification of configuration divergence from declared
infrastructure and policy baselines, triggering reconciliation or rollback.

Dynamic application security testing (DAST) — Testing of running applications and APIs
to identify exploitable conditions in staging or pull request environments.

Egress allowlist — Explicit, minimal outbound destinations permitted for workloads and
CI/CD runners, enforced and validated prior to deploy.

Environment parity — The degree to which staging mirrors production control posture,
including authorization, transport, egress, and logging schema, so tests remain
predictive.

Evidence Pack (EP) — The evidence repository structure used to demonstrate
conformance. For Domain 10, EP-10 is organized into five section-aligned locations:
EP-10.1 Requirements (Inputs), EP-10.2 Technical Specifications (Outputs), EP-10.3

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 14 of 67

Foundational Standards, EP-10.4 Control Mappings, and EP-10.5 Verification and
Validation activities. Evidence Pack references are used to link prerequisites,
implementation proof, and test outcomes.

Interactive application security testing (IAST) — Instrumented testing that observes code
behavior at runtime to locate vulnerabilities during functional tests.

Infrastructure as code (IaC) — Declarative definitions of infrastructure and platform
resources that are version-controlled and validated prior to deployment.

Key performance indicator (KPI) — A measurement used to track delivery integrity and
control effectiveness over time.

Known exploited vulnerability (KEV) — A vulnerability with credible evidence of active
exploitation that requires elevated prioritization and pipeline blocking in this standard.

MITRE ATT&CK — A knowledge base of adversary tactics and techniques used for
validation scenarios and threat alignment.

Mutual TLS (mTLS) — Transport security where both client and server present
certificates, used for service and administrative channels.

Policy as code (PaC) — Machine-enforced rules that validate configurations for network,
identity, cryptography, logging and telemetry, and platform hardening in CI/CD and
admission paths.

Progressive delivery — Controlled deployment strategies such as canary and blue-green
releases with health SLOs and automatic rollback conditions.

Provenance — Cryptographically verifiable statements about how and by whom an
artifact was built.

Reproducible build — A build process that deterministically produces bit-identical
artifacts from the same source and inputs, enabling integrity verification.

Rollback — Automated reversion to a prior known-good version when health checks,
tests, or security gates fail.

Runner — An execution environment that runs CI/CD jobs and requires isolation, scoped
identity, and controlled egress.

Runner isolation — Controls that prevent cross-job contamination and limit lateral
movement from runner environments, including workspace and cache separation.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 15 of 67

Seccomp and AppArmor — Linux security mechanisms used to constrain container
behavior through syscall filtering and mandatory access control profiles.

Secrets management — Issuance, storage, delivery, rotation, and revocation of
credentials via a centralized system. This standard prohibits secrets in repositories and
container layers and requires short-lived scoped credentials.

Secure software development lifecycle (SSDLC) — A lifecycle that integrates security
engineering activities and verification checkpoints into standard SDLC phases.

Service level objective (SLO) — A measurable reliability or security performance target
used for gating and acceptance decisions.

Software bill of materials (SBOM) — A machine-readable inventory of components and
versions for each build artifact, produced at build time and retained with the artifact.

Software composition analysis (SCA) — Identification of third-party components,
versions, licenses, and known vulnerabilities, with policy-driven gating.

Supply-chain levels for software artifacts (SLSA) — A framework for supply chain
integrity that defines build provenance expectations and aligns with signed attestations.

Threat modeling — A structured analysis, often STRIDE-based, that identifies assets,
trust boundaries, threats, and mitigations. In this standard, threat model deltas are
recorded with material architectural pull requests.

Trace ID and control ID — Standard log fields for correlating operations and referencing
specific control checks or policy evaluations within evidence.

Transport layer security (TLS) 1.3 — The required modern TLS protocol version for edge
transport where feasible within scope.

Version control system (VCS) — A system that tracks changes to code and
configuration, including branch controls, review workflows, and audit history.

Verify-on-pull — Deployment enforcement that verifies signatures and attestations when
an artifact is pulled for deployment, rejecting artifacts that fail validation.

Section 3. Scope

DevSecOps and Secure SDLC Engineering covers the engineering practices, delivery
platforms, and control mechanisms required to design, build, test, release, and operate

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 16 of 67

software with verifiable security at delivery speed. Modern enterprises distribute
workloads across on-premises environments, public and private cloud platforms, SaaS
systems, edge architectures, and multi-tenant computing environments. These
environments increase the difficulty of securing pipelines, dependencies, build systems,
artifacts, promotion paths, and runtime behavior. This Parent Standard defines the
architectural expectations and technical guardrails that establish a defensible
DevSecOps posture across these environments. The scope ensures that software
delivery systems block supply chain compromise, enforce non-bypassable security
gates, validate artifact integrity and provenance, eliminate secrets sprawl, maintain
environment parity, and produce auditable evidence while remaining aligned with
organizational risk tolerance and delivery objectives.

Applicability

o All Software Delivery Artifacts and Paths — Applies to source code, infrastructure
as code, policy repositories, CI/CD pipelines, build artifacts such as containers or
images, SBOMs, signatures and attestations, deployment manifests, and
operational configuration.

o Enterprise and Academic Environments — Intended for software engineers,
application security teams, DevSecOps engineers, SRE and platform engineers,
detection and incident response teams, and academic programs advancing
secure software engineering education.

« Hybrid and Multi-Platform Architectures — Governs DevSecOps controls across
data centers, multiple cloud providers, orchestration platforms, serverless and
edge compute, and shared build or artifact systems.

e Environment Coverage — Applies to development, test, staging, production, and
regulated environments. Exceptions for legacy or constrained systems require
compensating controls and time-bound remediation.

Key Focus Areas

« Everything as Code Governance — Version control with protected branches and
signed commits, traceable architectural decisions, and automated rollback
definitions.

e Gated CI/CD - Non-bypassable SAST, SCA, and IaC policy evaluations, image
scanning, and fail-closed gates at merge and release stages. Artifact signing and
verify-on-pull enforcement are mandatory at deployment.

o Software Supply Chain Integrity — Reproducible builds, SBOM generation and
retention, provenance and attestation validation, and KEV-aware prioritization
and block conditions.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 17 of 67

Secrets and Pipeline Identity — Central issuance of short-lived and scoped
credentials, zero secrets in repositories and images, full auditability of access,
and controlled rotation upon compromise.

Application and API Security Testing — Continuous SAST, DAST, and IAST, API
authentication and authorization tests including BOLA and BOPLA, and token
lifecycle validation.

Dependency and Container Security — License and vulnerability policy
enforcement, controlled base-image lifecycle, and hardened container images
with non-root execution, minimal capabilities, seccomp or AppArmor profiles, and
read-only root filesystems.

Environment Parity and Transport Controls — Staging environments mirror
production controls. TLS 1.3 is required at edges, mutual TLS is required for
service and administrative paths, egress allowlists are defined, and CI/CD
runners are isolated.

Observability and Evidence — Unified logging schema, immutable Evidence Pack
per release containing SBOMSs, signatures, test logs, parity results, and rollback
artifacts, with explicit SLO met or not met status.

Post-Deploy Validation — Progressive delivery with automatic rollback, and
breach and attack simulation or ATT and CK scenarios to validate detection
coverage and operational readiness.

Outcomes

By defining this scope, the standard ensures DevSecOps and Secure SDLC
Engineering produce repeatable outcomes across the Defensible Loop:

Define: Bound pipeline stages and release boundaries. Identify trusted sources,
authoritative registries, promotion paths, and the minimum evidence set required
to prove delivery integrity.

Design: Specify secure pipeline architecture and provenance intent. Define gate
logic, policy-as-code enforcement points, identity trust boundaries, and
acceptance criteria for promotion and rollback.

Deploy: Implement non-bypassable gates, signing and attestations, controlled
deployments, environment parity controls, and automated rollback and
revocation workflows as engineered delivery behaviors.

Detect: Instrument gate outcomes and integrity signals across build, registry,
deploy, and runtime promotion. Detect policy violations, drift, secret exposure,
and anomalies in artifact verification or promotion chains.

Defend: Execute operational containment actions for delivery compromise,
including artifact quarantine, signing key revocation, credential rotation, rollback
execution, and exception closure with time bounds and compensating controls.
Demonstrate: Produce release-grade proof, including attestations and
deployment trace evidence that links requirements to outputs and to verification
and validation artifacts stored in the Evidence Pack structure for Domain 10.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 18 of 67

Together, these phases provide the foundation for resilient, auditable, and high-velocity
software delivery that preserves integrity across source, pipeline, artifact, and promotion
workflows, and that concludes with proof rather than confidence statements.

Section 4. Use Case

Achieving resilient software delivery requires more than scanners and policies—it
demands engineered practice across source, pipelines, artifacts, and runtime. The
following consolidated use case reflects a complex, real-world scenario typical of
organizations that deliver services across on-premises, multi-cloud, and SaaS
platforms. It exposes common supply chain and pipeline weaknesses, ties them to
concrete DevSecOps controls (gated CI/CD, SBOM/provenance, secrets discipline,
environment parity), and maps each weakness to targeted, testable outcomes. The
result is an operational playbook that links day-to-day delivery actions—build, test,
release, deploy—to measurable, defensible reductions in exploitability and time-to-
rollback.

Table J-1:
UsNeag":se Securing the Software Supply Chain and CI/CD at Enterprise Scale
Prevent supply chain compromise, eliminate secret sprawl, enforce artifact
Objective integrity/provenance, and ensure fast and safe rollbacks—without sacrificing delivery

velocity.

A global SaaS provider ships weekly across multiple clouds. Recent incidents included an
unsigned image reaching production, long-lived credentials in a build container, and a
Scenario dependency added to the KEV list later. Outages and emergency patches eroded trust.
The organization lacked non-bypassable gates, SBOM/provenance coverage, and parity
between staging and production.

Principal Software Engineer, DevSecOps Lead, AppSec Engineer, SRE/Platform

Actors Engineer, Release Manager, Product Team Lead

Adversary Design-time Threat Models: STRIDE categories — Spoofing, Tampering, Repudiation,
mapping Information Disclosure, Elevation of Privilege.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 19 of 67

ATT&CK examples: T1195 Supply Chain Compromise; T1552 Unsecured Credentials;
T1555 Credentials from Password Stores; T1078 Valid Accounts; T1098 Account
Manipulation; T1562.001 Impair Defenses: Disable or Modify Tools; T1609 Container
Administration Command; T1610 Deploy Container; T1485 Data Destruction.

Kill Chain Phases: Weaponization (malicious dependency or build tooling), Delivery
(registry or pipeline insertion), Exploitation (credential misuse or gate bypass), Installation
(artifact substitution or secret persistence), C2 (abuse of trusted service identities),
Actions on Objectives (production compromise through unverified promotion, lateral
movement, or data access).

Failure Vectors Addressed: Unsigned or un-attested artifacts, compromised build runners,
secret sprawl in repositories or images, advisory-only gates, registry tampering,
environment parity gaps, and manual rollback delays.

Challenges
Identified

* No verify-on-pull at deploy; unsigned artifacts accepted

* Secrets in repos and container layers; long-lived tokens in CI

» SAST/SCA gates advisory only; merges proceeded on High findings
* No SBOM; no provenance/attestation; weak image hygiene

« Staging lacked TLS/mTLS parity with production; egress open

* Rollbacks manual; evidence packs incomplete

Technical
Solution

1) Gated CI/CD: Fail-closed SAST, SCA, infrastructure as code, and image scanning
gates. High and Critical findings at merge equal 0. KEV block list enforced.

2) SBOM, provenance, and signing: Generate an SBOM for 100 % of artifacts. Sign and
attest at publish. Enforce verify-on-pull at deploy.

3) Secrets and identity: Central secrets platform with short-lived, scoped tokens, with a
TTL of 24 h or less. Pre-commit and CI scanners block secrets in repositories and
images.

4) APl and application security testing for release enforcement: DAST and IAST are
executed in pull request or staging for internet-exposed services. APl authentication
and authorization tests cover BOLA and BOPLA. Token expiry and rotation validated.

5) Environmental parity and transport controls: Staging mirrors production controls. TLS
1.3 is enforced at edges. Mutual TLS is enforced for service and administrative paths.
Egress allowlists enforced. Runners isolated.

6) Build hygiene: Reproducible builds with pinned inputs and no latest tags. Images
execute as non-root. Restricted capabilities enforced. seccomp or AppArmor profiles
defined. Read-only root filesystem enforced where feasible.

7) Observability and evidence production: Unified logging schema. Evidence Pack
captured per release, including SBOMs, signatures and attestations, scan results, test
logs, parity results, and rollback logs.

8) Post-deploy validation and rollback: Canary or blue-green deployments with health
SLOs. Adversary simulation scenarios validate detection behavior. Automatic rollback
triggers on failure.

Expected
Outcome

* Artifact integrity: 100% SBOM/provenance coverage; deploy blocks unsigned/unstamped
artifacts
* Vulnerability posture: KEV at release = 0; base images updated < 30 days

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 20 of 67

* Secrets discipline: 0 secrets in repos/images; token TTL < 24h; rotation on compromise
<15 min

* Pipeline quality: signed-commit rate = 95% (30-day rolling); High/Critical at merge = 0

* Transport parity: mTLS coverage = 98% for service/admin paths; TLS 1.3 at edges in
staging and prod

*» Operations safety: automated rollback executes < 5 min; BAS detections fire < 10 min
end-to-end

» Evidence: complete Evidence Pack per release with “SLO met / not met” status for
gates, transport, and rollback

Signed commit enforcement reports; pipeline gate run logs for SAST, dependency
scanning, and infrastructure-as-code policy checks; SBOM exports for released artifacts;
signature and attestation bundles; registry audit trails and verify-on-pull denial logs for an
unsigned artifact test; short-lived credential issuance and rotation logs; runner isolation
Evidence and restricted egress validation outputs; staging-to-production parity checks for transport
Artifacts and logging; canary or blue-green promotion records and rollback drill logs; breach and
attack simulation outputs validating alert timing and rollback triggers.

Evidence Pack ID: EP-10.5 (verification and validation artifacts cross-linked to EP-10.2 for
technical specifications evidence).

Key Takeaways

o Gates must fail closed — Advisory scans allow defects and exploitable states to
ship. Mandatory blocking gates are required to produce a defensible release.

e Provenance and SBOM coverage must be universal — Partial coverage creates
blind spots for supply chain compromise. Every artifact must be signed, attested,
and accompanied by an SBOM.

« Secrets discipline is foundational — Secrets in repositories, images, or ClI
variables create persistent risk. Only short-lived, centrally issued identities are
acceptable.

e Environment parity determines predictability — Security controls validated in
staging cannot be trusted unless staging matches production transport and
authorization boundaries.

o Rollback must be automated and reversible at speed — Manual rollback
introduces downtime and uncertainty. Automated rollback with evidence-backed
triggers is required for operational safety.

o Evidence is the only defensible output — A release is considered secure only
when proof exists. Pipelines must produce immutable evidence packs showing
what ran, what passed, and what was blocked.

These takeaways reinforce that secure delivery is not a set of tools but an engineered
system of constraints, validations, identities, and measurable outputs.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 21 of 67

%%'%% Practitioner Guidance:

Jg The following guidance supports engineering teams adopting the patterns
demonstrated in this use case:

e Instrument pipeline controls as code — Express required controls as code,
store them in version control, and tie them to measurable SLOs. Avoid
informal policies that cannot be audited.

o Establish a required baseline — Confirm that branch protections, artifact
signing and attestations, centralized secret issuance, and environment
parity controls are in place before adopting sub-standards.

e Prove gates early and routinely — Introduce seeded failures such as an
unsigned artifact or an embedded secret to confirm fail-closed behavior.
Store results in the Evidence Pack.

e Treat identity as an attack surface — Minimize and monitor pipeline,
workload, and builder identities, enforce short-lived credentials, and validate
rotation. Identity drift creates the same risk profile as configuration drift.

o Validate transport guarantees continuously — Verify TLS and mutual TLS
using automated scans and parity checks rather than manual inspection.

e Make exceptions time-bound and controlled — Require a sunset date,
compensating controls, and Evidence Pack inclusion for any bypass path,
allowlist expansion, or disabled gate.

o Integrate post-deployment validation into release workflows — Run breach
and attack simulation scenarios to confirm detection and rollback paths
function under adversarial conditions.

Section 5. Requirements (Inputs)

This section outlines the essential architectural and environmental prerequisites for the
successful implementation of this Parent Standard and its associated sub-standards.
These inputs are not recommendations; they are baseline conditions that enable the
defensibility and enforceability of technical specifications defined across the domain.

5.1 Version Control and Branch Protection

All source code, infrastructure as code, policies, pipelines, and playbooks Must
be in version control with protected branches, required reviews
(CODEOWNERS), and signed commits enabled.

5.2 CI/CD Platform with Non-Bypassable Security Gates
Build and deployment pipelines Must exist for all services and enforce security

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 22 of 67

gates (SAST, SCA, laC policy checks, image scan) prior to merge and release,
with automated rollback steps defined.

5.3 Trusted Artifact Repositories and Provenance

A central artifact registry service Must enforce signature verification at publish
and pull, store SBOMs alongside artifacts, and record provenance and
attestations for all released components.

5.4 Secrets and Pipeline Identity Management

A central secrets platform Must issue short-lived, scoped credentials to CI/CD
systems and workloads; secrets are never stored in repositories or container
layers; access is fully audited.

5.5 Application Security Test Capability

SAST, DAST and IAST, API contract testing, and unit and integration test
harnesses Must be available; organization-wide severity thresholds and
coverage expectations are defined.

5.6 Policy-as-Code and laC Guardrails

Policy engines and rulesets Must exist for network, identity, cryptography,
logging and telemetry, and platform hardening; pipelines are integrated to block
critical violations.

5.7 Dependency and Container Security Readiness

SCA for operating system and application dependencies, and container image
scanning, Must be integrated; exploit-in-the-wild and KEV lists are synced for
prioritization; a base image lifecycle policy is enforced.

5.8 Threat Modeling Practice and PR Delta
A documented threat modeling process Must exist; pull requests that change
architecture include a threat model delta and mapped mitigations.

5.9 Environment Parity and Transport Controls

A staging environment Must mirror production control posture (authorization,
egress, TLS and mutual TLS, logging schemas) so security tests are predictive;
environment drift is monitored.

5.10 Logging Schema and Evidence Store

A unified log schema Must be defined and enforced; a tamper-evident evidence
store is available to retain release artifacts (configurations, SBOMs, signatures,
scan results, test logs) for audit.

5.11 Runner Isolation and Build Execution Security
CI/CD execution environments Must support runner isolation, scoped identity,
restricted egress, and teardown guarantees for build workspaces and caches.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 23 of 67

5.12 Deployment Admission and Promotion Enforcement

Deployment platforms Must support admission or promotion enforcement
capable of rejecting artifacts that fail signature validation, provenance checks,
SBOM presence, or vulnerability thresholds.

Evidence Pack

Record evidence Must be collected for Section 5 prerequisites in EP-10.1
(Requirements). Each requirement in 5.1 through 5.10 Must have at least one dated
artifact that identifies the owner, the current status, and the enforcement boundary.
Evidence Must be version-controlled and retained according to organizational audit
requirements.

Minimum evidence expectations for EP-10.1 include:

Source and change governance artifacts include protected branch configuration,
required review settings, CODEOWNERS rules, and signed-commit enforcement
evidence with an audit extract.

Pipeline readiness artifacts include CI/CD workflow definitions showing non-
bypassable gate execution points, rollback steps, and required job enforcement
for merge and release stages.

Artifact registry and provenance readiness artifacts include registry configuration
baselines for signature verification and retention, SBOM attachment policy, and
provenance or attestation enablement evidence at publish and pull boundaries.
Secrets and identity readiness artifacts include secrets platform configuration
baseline, credential issuance policy for short-lived scoped access, rotation
configuration, and audit logging configuration proving traceable access.
Policy-as-code and infrastructure guardrail artifacts include policy bundles and
rule references for network, identity, cryptography, logging and telemetry, and
platform hardening, including evidence that critical violations block promotion.
Dependency and build hygiene readiness artifacts include dependency and
image scanning configuration, KEV synchronization evidence, base image
lifecycle policy, and approved base image inventory or baseline.

Environment parity readiness artifacts include staging and production control
posture comparison for transport, egress, and logging schema, with drift
monitoring configuration evidence.

Logging and evidence store readiness artifacts include unified log schema
definition, schema validation configuration, tamper-evident evidence store
configuration baseline, and retention settings.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 24 of 67

EP-10.1 entries Must link forward to implementation proof in EP-10.2 (Technical
Specifications) and to test results in EP-10.5 (Verification and Validation) where
applicable.

7 \ Practitioner Guidance:

@

= o Readiness Gate (one page): List 5.1-5.10 with an owner, current status,
and a link to proof. Do not proceed to adopt sub-standards until every row is
green with a dated Evidence Pack ID.

e Baseline First: Capture current metrics for SAST/DAST fail rates, KEV
exposure, mTLS coverage, signed-commit rate, and SBOM coverage.
These serve as the control group for measuring §6 outputs.

o Blockers = Stop Work: If any of 5.2 (gated CI/CD), 5.3
(signed/provenanced artifacts), or 5.4 (central secrets) is missing, pause
downstream tasks and open a tracked risk—8§6 cannot be defensible
without them.

e Prove It in Pipeline: Add quick failing tests now (seeded secret, unsigned
image, KEV vuln) to show that gates actually block merges/releases; attach
those failing runs to the Evidence Pack.

Section 6. Technical Specifications (Outputs)

Technical specifications define the defensible engineering outputs required to
implement this Parent Standard. Each specification represents a distinct delivery
engineering area that translates security-by-design intent into measurable, auditable
software factory behaviors across CI/CD, source control, build systems, registries,
orchestrators, and runtime environments.

Outputs must be:
« Measurable: validated by scans, logs, audits, or tests
o Actionable: implementation-ready, not policy slogans
« Aligned: traceable to §5 Requirements and sub-standards

6.1 Everything as Code Governance
e All application, infrastructure as code, policy, and pipeline changes Must
occur through version-controlled pull requests with required review
enforcement.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 25 of 67

e Protected branches Must enforce commit signing for merge paths.

e Architecture Decision Records or equivalent change records Must be
linked to the change that introduced the decision.

e Release processes Must include an automated rollback definition stored
as code and promoted with the same governance as deployment
changes.

6.2 Secure Pipeline Gates

e Pipeline gates Must fail closed for merge and release promotion stages.

e SAST thresholds Must block merge when Critical or High findings are
present, and coverage requirements Must be defined for changed code.

e Dependency scanning and image scanning Must block KEV items and
Critical or High findings unless a time-bounded exception exists with
compensating controls.

e Infrastructure as code policy evaluation Must block Critical violations prior
to merge and prior to deploy.

e SBOMSs and signed attestations Must be produced for deployable release
artifacts, and verify-on-pull Must be enforced at deploy.

e Build identities and deploy identities Must be separated, and build jobs
Must not hold production write privileges.

6.3 Software Supply Chain Integrity and Build Hygiene

e Builds Must be reproducible and deterministic for in-scope deployment
artifacts.

e Release workflows Must not rely on unpinned dependencies or “latest”
tags for base images and build inputs.

e Base image lifecycle Must be defined and enforced, including update
timelines and inventory control.

e Containers Must execute as non-root and use restricted Linux capabilities
with validated seccomp or AppArmor profiles.

6.4 Secrets and CI/CD Identity
e Secrets Must not be present in repositories or container layers used for
deployable artifacts.
e CI/CD identities Must use short-lived, scoped credentials, and rotation
procedures Must exist for compromise triggers.
e Secret access Must be attributable to service identities through complete
audit logs.

6.5 Application Security Testing as Release Enforcement
e Testing outputs used for promotion decisions Must be integrated into
pipeline gates for internet-exposed services.
e Dynamic testing coverage requirements Must be defined for staging or
pull-request environments where applicable.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 26 of 67

e API negative and positive tests Must validate authentication, authorization,
and token lifecycle behavior where services are exposed through APIs.

6.6 Dependency and Container Security

e Policies for dependency governance Must define license thresholds,
vulnerability thresholds, and KEV blocking behavior.

e Container hardening expectations Must include read-only root filesystem
where feasible, resource limits, and prevention of privilege escalation such
as CAP_SYS_ADMIN.

e Deployment pathways Must reject artifacts that fail provenance, signature,
or attestation validation.

6.7 Environment Parity and Transport Controls
e Staging control posture Must mirror production control posture for
authorization, logging schema, egress controls, and transport security.
e TLS 1.3 Must be enforced at edges, and mutual TLS Must be used for
service and administrative paths where required by the architecture.
e Runner isolation and outbound egress restriction Must be enforced for
CI/CD execution environments.

6.8 Observability and Evidence
e A unified logging schema Must be implemented across build, deploy, and
runtime promotion workflows.
¢ Release processes Must produce a complete Evidence Pack record set
containing the artifacts required to demonstrate output enforcement and
release decisions.

6.9 Threat Modeling and Pull Request Delta
e Each service Must maintain an updated threat model.
e Architectural pull requests Must include a threat model delta with
mitigations mapped to tests or enforcement controls.

6.10 Post-Deploy Validation and Rollback
¢ Deployments Must use progressive delivery patterns where risk and
criticality justify controlled promotion.
¢ Rollback paths Must be automated, and rollback triggers Must be bound to
defined health criteria.
e Adversary simulation or equivalent validation activities Must be executed
on a defined cadence for services with internet exposure or elevated risk.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 27 of 67

Evidence Pack

Evidence Must be collected for Section 6 technical specifications in EP-10.2 (Technical
Specifications). Each output in 6.1 through 6.10 Must include at least one dated artifact
that demonstrates implementation, enforcement, and the applicable measurement point.
Evidence Must be version-controlled and retained according to organizational audit
requirements.

Minimum evidence expectations for EP-10.2 include:

Everything as code governance evidence includes branch protection settings,
commit signing enforcement reports, pull request audit extracts, ADR links, and
rollback definition artifacts.

Secure pipeline gate evidence includes pipeline run logs, gate results, blocked
merge records, KEV blocking outputs, and verify-on-pull denial logs from an
unsigned artifact attempt.

Supply chain and build hygiene evidence includes SBOM exports, attestation
bundles, rebuild parity outputs where applicable, base image inventory and
lifecycle records, and container hardening scan outputs.

Secrets and identity evidence includes secret scanning outputs, credential
issuance and TTL policy evidence, rotation logs for compromise triggers, and
secret access audit trails.

Testing as release enforcement evidence includes promotion gate configuration
tied to test outputs, test result summaries for in-scope services, and artifact links
to the release record.

Dependency and container security evidence includes dependency policy
baselines, vulnerability and license threshold enforcement outputs, and
provenance verification results prior to deployment.

Environment parity and transport evidence includes parity checks for staging
versus production, TLS and mutual TLS validation outputs, runner isolation
evidence, and outbound egress restriction validation.

Observability and evidence production include unified logging schema definition,
schema validation results, and release Evidence Pack completeness records.
Threat modeling delta evidence includes threat model artifacts, pull request delta
records, and mitigation to test mappings.

Post-deploy validation and rollback evidence includes progressive delivery logs,
rollback trigger configuration and execution logs, and simulation results where
required by scope.

Entries in EP-10.2 Must link back to EP-10.1 (Requirements) to demonstrate
prerequisite readiness and Must link forward to EP-10.5 (Verification and Validation) for
test execution artifacts and formal acceptance results.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 28 of 67

Practitioner Guidance:

¢ Instrument failing tests early. Seed a High-severity SAST flaw, a KEV
dependency, and an embedded secret to confirm pipeline gates block
merges or releases.

o Elevate transparency. Maintain service dashboards tracking signed-commit
rate, SBOM and provenance coverage, mutual TLS coverage, KEV
exposure, and exception counts.

¢ Maintain exception discipline. Any bypass, allowlist expansion, or disabled
rule requires a compensating control, a sunset date, an approval record,
and inclusion in the Evidence Pack.

¢ Integrate identity and transport controls. Link CI/CD identities to the IAM
domain policy, and ensure that interservice traffic adheres to CEK-aligned
TLS configurations.

¢ Validate runtime conditions. Simulation outputs and rollback behavior
should be included in release acceptance reviews for in-scope services.

2

Quick Win Playbook:
Title: Artifact Signing and Promotion Integrity Enforcement

Objective: Establish a deploy-time enforcement path that blocks unsigned or un-
attested artifacts, validates provenance at promotion boundaries, and produces
evidence artifacts that support release defensibility.

Target: Enforce artifact signing, attestation validation, and verify-on-pull in one
critical deployment environment.

Component/System: CI/CD pipelines, artifact registry, admission enforcement
point, deployment stack.

Protects: Prevents unsigned or tampered artifacts from entering promotion paths
and blocks supply chain insertion through artifact substitution.

Stops and Detects: unsigned artifacts, revoked signing keys, repackaged artifacts,
and missing attestations.

Action: Enable signing and attestation at build. Enforce verify-on-pull at deploy.
Execute one negative test by attempting to deploy an unsigned artifact and
confirming denial.

Proof: Artifacts stored in EP-10.2 and cross-linked to EP-10.5 include signing
policy diffs, attestation bundles, denial logs, provenance verification logs, and a

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 29 of 67

successful deploy record for a valid artifact.

Metric: 100 % deployable artifacts are signed and attested, 0 unsigned artifacts are
admitted, and verify-on-pull checks succeed for accepted artifacts.

Rollback: Revert enforcement only through a time-bounded exception and record
compensating controls and a sunset date in the Evidence Pack.

Section 7. Cybersecurity Core Principles

This section identifies the foundational security architecture and engineering principles
that guide the intent, design, and implementation of this Parent Standard. These
principles are drawn from the ISAUnited Recommended Principles (ISAU-RP) catalog
and represent the enduring philosophies that shape secure system architecture and
defensible engineering practices across all domains.

Purpose and Function

Security principles provide more than technical direction—they embed discipline, clarity,
and foresight into every recommendation. By grounding technical specifications and
implementation strategies in well-defined principles, ISAUnited ensures that sub-
standards do not merely respond to threats tactically but are built to withstand
architectural risk over time.

Table J-2. Examples of Applicable Principles:

ISAU-RP ID Principle Name || Justification for DevSecOps & Secure SDLC Engineering

Enforces tightly scoped permissions for CI/CD identities,
runners, build systems, registries, and deployment controllers.
Prevents horizontal and vertical escalation within pipelines and
source repositories.

ISAU-RP-01 Least Privilege

Requires explicit verification of artifacts, identities, and actions at
ISAU-RP-02 Zero Trust every stage of delivery. Aligns directly to verify-on-pull, SBOM,
and provenance validation, attestation checks, and mutual TLS
across service and administrative paths.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 30 of 67

ISAU-RP ID

Principle Name

Justification for DevSecOps & Secure SDLC Engineering

ISAU-RP-03

Complete
Mediation

Ensures that pipeline gates, admission controllers, provenance
validators, and signature checks cannot be bypassed. Supports
fail-closed behavior for SAST, SCA, laC checks, and image
scanning at merge and deploy.

ISAU-RP-04

Defense in Depth

Provides layered security across source control, build steps,
artifact storage, admission pathways, runtime environments, and
post-deploy validation. Reinforces multi-point enforcement of
trust and integrity.

ISAU-RP-05

Secure by Design

Embeds security considerations at planning, design, coding,
building, testing, and deployment phases. Supports threat
modeling, PR deltas, structured rollback definitions, and supply
chain engineering.

ISAU-RP-10

Secure Defaults

Drives default-deny settings for pipeline gates, unsigned-artifact
rejection, secret scanning, runner isolation, and environment
parity. Ensures that unsafe configurations require explicit
override and justification.

ISAU-RP-12

Security as Code

Central to DevSecOps. Requires policies, guardrails, controls,
tests, and evidence generation to be automated, version-
controlled, peer-reviewed, and executed via CI/CD. Enables
enforceable, auditable security at scale.

ISAU-RP-15

Evidence
Production

Directly aligns with Evidence Packs, SBOM retention,
provenance bundles, scan results, and traceable release
decisions. Ensures every release includes verifiable artifacts
proving conformance and defensibility.

ISAU-RP-14
(Recommended)

Resilience and
Recovery

Supports progressive delivery, automated rollback, health SLO
validation, and recovery actions required for safe deployment in
multi-cloud and distributed architectures.

ISAU-RP-16
(Recommended)

Make
Compromise
Detection Easier

Justifies mandatory unified logging schemas, trace identifiers,
mTLS attribution, BAS and ATT, and CK validation, and runtime
observability throughout the delivery chain.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 31 of 67

Note: Organizations may include a matrix mapping each selected principle to its
associated technical outputs or control mappings, further demonstrating traceability.

Section 8. Foundational Standards Alignment

This section identifies the internationally recognized foundational frameworks that
support and align with the architectural direction of this Parent Standard. These
foundational standards provide essential baselines for security, governance, and risk
management that ISAUnited builds upon to define defensible, engineering-driven
standards.

Purpose and Function

While ISAUnited does not duplicate existing compliance frameworks, it acknowledges
their critical role in shaping baseline expectations for cybersecurity architecture and
control design. This section:
« Demonstrates alignment with global best practices
« Bridges compliance frameworks with ISAUnited’s engineering-focused approach
« Enhances credibility and traceability for enterprise adoption and audit-readiness
o Establishes a consistent reference point for sub-standards to map technical
controls

Table J-3. Applicable Foundation Standards:

Framework || Standard ID Reference Focus

Secure Software Development Framework (SSDF) — secure SDLC

NIST SP 800-218 tasks and practices

SP 800-53 Rev. ||Security & Privacy Controls — AC, AU, CM, RA, SA, Sl families relevant

NIST 5 to delivery pipelines and assurance

SP 800-160 Systems Security Engineering — life-cycle engineering, evidence, and
NIST X

Vol. 1 trustworthiness

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 32 of 67

Framework || Standard ID Reference Focus

SP 800-161 Cyber Supply Chain Risk Management — supplier, component, and
NIST .

Rev. 1 artifact assurance

SP 800-204 Microservices/Container/Kubernetes security architecture and
NIST . ; .

Series hardening (as applicable)
ISO/IEC 27001:2022 ISMS requirements — governance and risk integration for software

delivery controls

Control catalog — implementation guidance mapped to pipeline, runtime,

ISO/IEC 27002:2022 .
logging, and change control

Application Security — organizational processes for secure application

ISO/IEC 270341 ;
development and operation

NOTE: As detailed sub-standards are developed under this parent standard, specific
references to NIST and ISO will be incorporated to provide control-level alignment and
practical implementation guidance for DSS practitioners.

NOTE: ISAUnited Charter Adoption of Foundational Standards.

Per the ISAUnited Charter, the institute formally adopts the International Organization
for Standardization/International Electrotechnical Commission (ISO/IEC) and the
National Institute of Standards and Technology (NIST) as its foundational standards
bodies, consistent with their public encouragement of organizational adoption. Parent
Standards align with ISO/IEC and NIST for architectural grounding and auditability, and
this alignment cascades down to Sub-Standards as invariant, minimum requirements
that may be tightened but not weakened. ISAUnited does not restate or speak on behalf
of ISO/IEC or NIST; practitioners shall consult the official publications and terminology
of these organizations, verify scope and version currency against the latest materials,
and implement controls in a manner consistent with ISAUnited security invariants and
the requirements of this standard.

Sub-Standard Expectations:

Sub-standards developed under this Parent Standard must:

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 33 of 67

« Reference one or more of the foundational standards above, where applicable
o Extend these foundational expectations into domain-specific engineering controls
« justify any intentional divergence from foundational principles or models

Evidence Pack

Evidence Must be collected for Section 8 foundational standards alignment in EP-10.3
(Foundational Standards). Each referenced NIST or ISO standard in Table J-3 Must
have at least one dated mapping artifact that identifies the applicable clause or practice,
the affected §6 output, the enforcement mechanism, and the Evidence Pack cross-
reference for proof.

Minimum evidence expectations for EP-10.3 include:

e A clause-level mapping sheet linking §6 outputs to NIST SP 800-218 practices
and to applicable clauses in the remaining foundational standards in Table J-3.

e Version-controlled records showing when mappings were created or updated,
including pull request references and change rationale.

e A divergence register documenting any intentional deviation from a referenced
clause or model, including compensating controls, a sunset date, and the
verification method used to demonstrate an equivalent or stronger effect.

e Cross-links from the mapping sheet to implementation artifacts in EP-10.2
(Technical Specifications) and to verification and validation artifacts in EP-10.5
(Verification and Validation) where applicable.

Entries in EP-10.3 Must remain current. Any change to a gate, policy, signing rule, or
transport profile that impacts a mapped clause Must update the mapping in the same
change record and include an updated evidence reference.

~@x\ | Practitioner Guidance:

@ y

— o Map at clause level: For each §6 output (for example, 6.2 pipeline gates and
6.3 supply chain integrity), add a row to your service mapping sheet that
lists the specification identifier, the NIST or ISO clause, how the clause is
enforced, and the Evidence Pack reference. Store this mapping in EP-10.3
and cross-link it to EP-10.2 and EP-10.5 where applicable.

e SSDF as backbone: Ensure every relevant SSDF practice (SP 800-218) is
backed by a concrete §6 output and passing artifacts in §12.

o Keep mappings current: When a gate or policy changes, update the NIST or
ISO clause reference in the same pull request and store the diff in EP-10.3.

o Divergence discipline: If a clause cannot be met verbatim, record the
compensating control, the sunset date, and a verification result

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 34 of 67

demonstrating an equivalent or stronger effect. Store the record in EP-10.3
and cross-link validation artifacts in EP-10.5.

Section 9. Security Controls

This section identifies the technical control families and control references that this
Parent Standard directly supports or enforces. These controls map the standard's
architectural and engineering guidance to recognized cybersecurity frameworks,
enabling traceability, auditability, and consistent implementation across diverse
environments.

Purpose and Function

Security controls translate architectural intent into actionable safeguards. They provide
the tactical grounding for how a system enforces confidentiality, integrity, availability,
authentication, authorization, and auditability.

By mapping to widely accepted frameworks such as CSA CCM, CIS Controls v8, and
OWASP ASVS or API Top 10, ISAUnited ensures:

o Alignment with industry best practices and compliance frameworks

o Cross-organizational interoperability and third-party validation

e Reusability across sub-standards under the same Parent domain

These mappings also help engineers and reviewers understand the defensibility of each
technical output within the domain.

Implementation Guidance

When defining DSS sub-standards or producing implementation evidence
o Reference at least three technical controls from one or more authoritative control
frameworks of CIS, CSA, and or OWASP.
e Provide the framework acronym, control ID, and optionally a short label or
explanation.
o Select controls that support the technical outputs or security principles defined in
this Parent Standard.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 35 of 67

« Avoid vague or policy-level controls—focus on implementation-level or
enforceable technical safeguards.

Table J-4. Control Mappings for DevSecOps & Secure SDLC Engineering:

Framework Colnl;rol Control Name / Description

Least-Privilege Access — Enforce scoped, short-lived identities for CI/CD,

CSA CCM IAM-05 o
registries, and platforms.

SEF-01/ |Security Event Logging & Management — Centralize and monitor delivery-

CSA CCM SEF-02 ||system and application security events.

Threat & Vulnerability Management — Gate builds and deploys on risk (SCA,

CSACCM | TVM-01 image scans, KEV blocking).

Data Integrity & Provenance — Require artifact signing, attestations, and

CSA CCM DCS-03 e
verification upon deployment pull.

Change Management Technology - Change control and configuration
CSA CCM CCC-03 |management for organizational assets, including applications, systems,
infrastructure, and configuration.

Inventory and Control of Software Assets — Track code, images, packages,

CIS v8 2.X . 1
and manifests across environments.
Secure Configuration of Enterprise Assets and Software - Establish, enforce,
and continuously validate secure configuration baselines for CI/CD platforms,
CIS v8 4.x o) .) .
runners, registries, and deployment systems, including drift detection and
corrective actions.
Account Management — Govern CI/CD and platform accounts, service
CIS v8 5.x . o
identities, and role scopes.
Audit Log Management — Collect, retain, and protect logs for build, deploy,
CIS v8 8.x >
and application events.
CIS v8 16.x Application Software Security — Integrate SAST/DAST/IAST and SDLC

governance with non-bypassable gates.
Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 36 of 67

Framework CoInI;roI Control Name / Description
OWASP V2 x Authentication Architecture — Token lifecycle, session management, and
ASVS ' credential handling in services/APls.
OWASP V4 x Access Control — Enforce and verify authorization decisions (incl.
ASVS ' object/function-level).
OWASP Configuration & Operations — Secure configuration, environment parity, and

V14.x . o e

ASVS logging/monitoring verification.
OWASP API AP Broken Object Level Authorization (BOLA) — Prevent and test for object-level
Top 10 authorization flaws.
OWASP API API2 Broken Authentication — Prevent and test for auth weaknesses and token
Top 10 misuse.
OWASP API API5 Broken Function Level Authorization (BFLA) — Enforce and test function-level
Top 10 authorization.

NOTE: NIST and ISO are Foundational Standards in §8. Use CSA/CIS/OWASP here in
§9 for control implementation. Adversary-technique mapping (e.g., ATT&CK) belongs in
§12 and sub-standards’ test plans.

NOTE: Use of External Control Frameworks.

ISAUnited maps to external control frameworks to provide alignment and traceability,
but does not speak on behalf of those organizations. Practitioners shall consult and
follow the official practices, recommendations, and implementation guidance of the
Center for Internet Security (CIS), the Cloud Security Alliance (CSA), and the Open
Worldwide Application Security Project (OWASP) when applying controls. Always verify
control identifiers, scope, and version currency against the publishers’ latest materials.
Where wording differs, use the framework’s official documentation while maintaining
consistency with ISAUnited security invariants and this standard's requirements.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 37 of 67

Additional References

As the DevSecOps domain matures or as additional authoritative frameworks become
relevant, authors and contributors may include supplementary CSA/CIS/OWASP
controls where sub-standards directly enforce them.

Sub-Standard Expectations

Sub-standards developed under the DevSecOps & Secure SDLC Engineering Parent
Standard are required to:
o Select and enforce explicit controls relevant to their scope (e.g., artifact signing &
verify-on-pull, SCA/KEV blocking, API authorization tests).
« Provide detailed mappings of these controls to §6 outputs and to defined
verification/validation criteria in §12.
o Justify and document any deviation from the Parent-level control families with
compensating controls and a sunset date, ensuring transparency and
defensibility.

Evidence Pack

Evidence Must be collected for Section 9 control mappings in EP-10.4 (Control
Mappings). Each control referenced in Table J-4 Must have a dated mapping record
that identifies the control identifier, the related §6 output, the enforcement mechanism,
and the associated verification and validation activity in §12.

Minimum evidence expectations for EP-10.4 include:

¢ A Controls-to-Outputs mapping sheet that links each CSA, CIS, and OWASP
control to one or more §6 outputs and to the responsible owner.

e A control enforcement record that identifies where the control is implemented,
including policy-as-code rules, pipeline gates, admission enforcement points,
identity constraints, or logging and telemetry configurations.

e An exception register documenting any deviation from a mapped control,
including compensating controls, a sunset date, approval record, and the
Evidence Pack cross-reference for proof.

e Cross-links from EP-10.4 to implementation artifacts in EP-10.2 (Technical
Specifications) and to test results in EP-10.5 (Verification and Validation) that
demonstrate pass or fail outcomes for the mapped control.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 38 of 67

Entries in EP-10.4 Must remain current. Any change to a gate, policy, signing rule, or
promotion pathway that affects a mapped control Must update the mapping in the same
change record and include an updated evidence reference.

Practitioner Guidance:

o Build a Controls-to-Outputs map for each service. Each control in Table J-4
should map to the related §6 output, the applicable §12 test reference, and
an Evidence Pack reference showing pass or fail.

e Keep mappings current. Update the map in the same pull request that
changes a gate, policy, or runtime control, and attach proof artifacts to the
Evidence Pack.

o Prefer enforceable controls. If a control cannot be expressed as code or
measured, replace it with an equivalent control that can be enforced and
verified.

Section 10. Engineering Discipline

This section outlines the architectural thinking, rigorous engineering processes, and
disciplined operational behaviors required to implement the DevSecOps and Secure
SDLC Engineering Parent Standard (ISAU-DS-DSS-1000) effectively. ISAUnited’s
Defensible Standards are not compliance checklists. They are engineered frameworks
that emphasize integrity, precision, and sustained operational effectiveness across
planning, build and test, release and deploy, and runtime operations.

10.1 Purpose and Function

Purpose.

Establish a repeatable, evidence-producing engineering system that
integrates systems thinking, lifecycle control, supply chain assurance,
adversary-aware design, and measurable security outcomes across
CI/CD, and runtime promotion.

Function in D10S.

Parent Standards define domain-level engineering invariants and
expectations. Sub-standards operationalize those invariants through
security-as-code, policy-as-code, test specifications, admission controls,
and evidence artifacts embedded in software delivery pipelines and
runtime promotion paths.

10.2 Systems Thinking
Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 39 of 67

Goal: Make the DevSecOps system legible end-to-end, including
boundaries, data flows, trust relationships, identities, promotion paths,
supply chain dependencies, and pipeline invariants, so controls bind
where pipeline and artifact integrity risks actually occur.

10.2.1 System Definition and Boundaries

o Declare CI/CD, repository, registry, build system, and deployment
system boundaries, including VCS, runner fleet, artifact registry,
signing and attestation services, policy controller, orchestrator, and
runtime environment.

« Define trust zones for source to build to artifact to registry to deploy
to runtime pathways, including identity issuance, attestation
signing, and verify-on-pull enforcement points.

o Establish boundary invariants, for example: no unsigned commits
on protected branches, no unsigned or un-attested artifacts
admitted to deploy, no fail-open pipeline gates, short-lived tokens
for CI/CD identity surfaces, and immutable audit logs for build and
deploy actions.

10.2.2 Interfaces and DevSecOps Contracts
Engineering teams Must maintain Interface Control Documents (ICDs)
for source control, pipeline orchestration, registry interactions,
attestation workflows, admission control checks, and evidence
exchange.
For each interface, specify: identity model (human, service,
workload); privileges and constraints; data schemas (SBOM format,
provenance schema, signing metadata, pipeline event logs); latency
SLOs; promotion invariants (verify-on-pull must pass); fail-closed
behaviors; mandatory audit fields (build_id, commit_id, signer _id,
attestation_id, evidence_pack_reference)

10.2.3 Dependencies and Emergent Behavior

e Map shared services that influence DevSecOps integrity, including
key management, secrets platforms, signing and attestation
services, package repositories, orchestrator APIs, runner
infrastructure, evidence stores, and logging and telemetry stacks.

e Identify emergent risk from composition, for example: build system
compromise paired with unsigned commits produces untrustworthy
artifacts, registry tampering paired with missing provenance creates
insertion paths, runner reuse paired with long-lived tokens creates
identity hijack paths, drift paired with weakened policy enforcement
enables bypass of trusted stages, and schema mismatch paired
with partial SBOMs creates false perceptions of supply chain
integrity.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 40 of 67

10.2.4 Failure Modes and Safeguards

e For each critical path from commit to deploy, document likely
failures, including missing or invalid signatures, broken attestation
chains, disabled pipeline gates, policy controller outages, drift
between staging and production, registry unavailability,
compromised runners, and expired workload certificates.

e Design safeguards include negative tests for unsigned artifacts or
missing SBOMs, fail-closed pipeline behavior, registry read-only
fallback, where applicable, policy regression tests, ephemeral
runners with teardown guarantees, parity validation across
environments, and rollback automation.

Required Artifacts (minimum): DevSecOps system diagram with trust
boundaries; source to build to artifact to deploy data-flow map; ICD set,
pipeline, and registry invariants register

10.3 Critical Thinking
Goal: Eliminate assumption-based pipeline and supply chain
configurations by replacing them with explicit, reviewed, evidence-based
reasoning that withstands adversarial pressure, operational constraints,
and audit scrutiny.

10.3.1 Decision Discipline
e Maintain Architecture Decision Records (ADRs): problem to
options to constraints/assumptions to trade-offs to decision
to invariants to test/evidence plan (who / when / how
measured).
e Require ADR linkage to relevant ISAU-RPs (01-20),
NIST/ISO clauses, and Evidence Pack IDs.

10.3.2 Engineering Prompts
Prompts engineers should answer explicitly:

¢ Boundaries: Which supply chain or identity boundaries exist
and why? Where must trust be re-established, including
commit signing, attestation signing, and verify-on-pull?

e Interfaces: What invariants must always hold, including
signature verification, SBOM completeness, and schema
adherence? How are these invariants validated during every
release?

e Adversary Pressure: Which ATT and CK techniques apply
to CI/CD, registries, or orchestrators? Where could
adversaries insert artifacts or hijack identity?

e Evidence: What objective evidence proves integrity,
including attestations, SBOMs, build logs, and verify-on-pull
outputs? How is parity between staging and production
validated?

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 41 of 67

e Failure: Does failure default to deny or permit? When
deployed, does rollback execute predictably?
Required Artifacts (minimum): ADRs; assumptions and constraints log;
evidence plan per architecture or pipeline decision

10.4 Domain-Wide Engineering Expectations

Secure System Design

Engineering teams Must define and validate boundaries for source control,
build systems, runners, registries, orchestrators, and runtime workloads
using the §10.2 artifacts and engineering reviews.

Implementation Philosophy, Built-in, not Bolted-on

Engineering teams Must integrate signing, attestation, policy as code,
verify-on-pull, and gate enforcement at design time and express
enforcement mechanisms as code rather than as post-release
compensating patches.

Lifecycle Integration

Engineering teams Must integrate DevSecOps checks across merge, pre-
deploy, deploy, and post-deploy phases and update ADRs and Evidence
Pack references whenever a gating policy, signing policy, or promotion
boundary changes.

Verification Rigor

Engineering teams Must combine automated checks with targeted probes,
including negative tests for unsigned artifacts, revoked key scenarios, and
drift injections, and maintain continuous validation of gates, supply chain
integrity, and environment parity.

Operational Discipline

Engineering teams Must maintain operational runbooks for key
compromise, attestation-chain failure, registry tampering, and rollback
procedures and record operational actions and outcomes in the Evidence
Pack structure.

10.5 Engineering Implementation Expectations

e Policies and controls as code. Store policy as code, infrastructure as
code, signing policies, admission rules, and provenance validation
logic in version control with signed commits and peer review
enforcement.

e Structured pipeline promotion. Implement CI/CD pipelines with artifact
signing, attestation, SBOM generation, verify-on-pull enforcement,
negative tests, and rollback definitions.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 42 of 67

Explicit promotion path mapping. Document commit to build an artifact
to the registry to deploy chains and maintain dashboards for SBOM
completeness, signature validity, KEV blocking, and runner isolation.
Automated testing and negative validation. Run supply chain negative
tests, including unsigned artifacts, malformed SBOM submissions, or
revoked signing keys, on a defined cadence and prior to high-risk
promotions.

Traceable architecture decisions. Link policy changes to ADR, test,
and Evidence Pack references.

Required Artifacts (minimum): policy and infrastructure repositories;
enforcement and test gate definitions; trust-boundary ICDs; signature and
attestation validation reports; automated test logs; evidence ledger referenced by

§12

10.6 Sub-Standard Alignment (Inheritance Rules)
Sub-Standards Must operationalize this engineering discipline with
DevSecOps-specific detail and maintain traceability to §6 outputs, §7
principles, §8 foundational standards, §9 controls, and §12 verification and
validation activities.

Example Sub-Standard Engineering Applications:

ISAU-DS-DSS-1010 (CI/CD Runner and Identity Security)
ISAU-DS-DSS-1020 (Policy as Code and Admission Control)
ISAU-DS-DSS-1030 (Software Supply Chain Integrity and
Provenance)

ISAU-DS-DSS-1040 (Application and API Security Testing)
ISAU-DS-DSS-1050 (Environment Parity and Deployment Safety)

10.7 Evidence and V&V (What Proves It Works)
Engineering teams Must maintain Evidence Pack references for
DevSecOps proof artifacts using the EP-10 structure:

Design Evidence: architecture diagrams, ICDs, and trust boundaries;
invariants register; ADRs; supply chain maps

Build Evidence: signing logs and attestation bundles; SBOM and
provenance artifacts; CI/CD test outputs; pipeline gate enforcement
results

Operate Evidence: environment parity scans; verify-on-pull logs; drift
detection results; token lifecycle audit trails; base image lifecycle
reports

Challenge Evidence: negative test runs, including unsigned artifacts,
incomplete SBOMSs, or revoked keys; drift injection results; rollback
drills; adversary simulation scenarios for delivery threats; compromise
simulations

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 43 of 67

Each control defines the objective pass/fail criteria, test frequency, responsible
owner, and retention period.

Section 11. Associate Sub-Standards Mapping

Purpose of Sub-Standards

ISAUnited Defensible Sub-Standards are detailed, domain-specific extensions of the
DevSecOps and Secure SDLC Engineering Parent Standard (ISAU-DS-DSS-1000).

Each Sub-Standard delivers:

« Granular technical guidance tailored to specialized DevSecOps domains.

o Actionable engineering strategies that convert architectural intent into
enforceable pipeline and runtime controls.

o Defined verification and validation methodologies ensuring outputs are
measurable, testable, and auditable.

o Alignment with the Parent Standard’s § 6 technical outputs, § 7 cybersecurity
principles, and Table J-3 foundational standards.

Sub-Standards transform high-level DevSecOps direction into the technical precision
required for consistent pipeline hardening, continuous validation, secure automation,
integrity assurance, and defensible release processes across all delivery environments.
This structure enables requirements to flow down from the Parent Standard into Sub-
Standard requirements, tests, and Evidence Pack references, ensuring implementations
remain consistent, traceable, and auditable.

Scope and Focus of DSS Sub-Standards

Secure CI/CD Pipeline Architecture and Runner Isolation
Example — ISAU-DS-DSS-1010: CI/CD Architecture, Runners, and Execution Controls
e Defines secure runner classes (ephemeral, isolated, scoped) and teardown
guarantees.
e Enforces non-bypassable gating functions for SAST, SCA, IaC, and supply chain
checks.
e Establishes identity boundaries, token constraints, and required attestation flows.
e Validates runner and pipeline components through negative tests and audit logs.

Policy-as-Code and laC Security
Example — ISAU-DS-DSS-1020: Policy Bundles, Enforcement Engines, and l1aC
Guardrails

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 44 of 67

e Defines policy bundles for network, identity, cryptography, logging, and container
posture.

e Requires deterministic PaC evaluation in CI/CD, and admission paths.

e Enforces drift detection and automatic remediation.

e Integrates validation of policy changes through regression testing and Evidence
Pack entries.

Automated Security Testing and Release Gates
Example — ISAU-DS-DSS-1030: Automated Test Gates and Release Quality Controls
e Establishes mandatory SAST, DAST, IAST, SCA, and container-scan thresholds.
e Defines coverage requirements for changed files, endpoints, and service APlIs.
e Enforces fail-closed merge and release rules.
¢ Integrates health SLOs and post-deploy test validation into promotion workflows.

Software Supply Chain Integrity and Provenance
Example — ISAU-DS-DSS-1040: SBOM, Signing, and Provenance Validation
e Requires SBOM generation and attestation for 100 percent of artifacts.
e Defines signing policy, attestation formats, transparency requirements, and
verify-on-pull behavior.

e Enforces deterministic builds and rebuild-parity checks.
¢ Integrates key-rotation drills and tampering simulations.

Secrets Management and Credential Hygiene
Example — ISAU-DS-DSS-1050: Secrets Governance and ldentity-Bound Access
Controls

e Prohibits static or embedded secrets in source or images.

e Issues short-lived, scoped pipeline and workload credentials.
e Requires rotation within 15 minutes of compromise.

e Enforces full auditability of secret access and token usage.

Reproducible Builds and Release Governance
Example — ISAU-DS-DSS-1060: Deterministic Build Controls and Promotion Path Rigor
e Defines reproducible build requirements and no-latest-tag constraints.
e Requires signed release manifests and structured promotion chains.
e Enforces automated rollback paths and release gating invariants.
e Validates build reproducibility through parity diff tests.

Pipeline Telemetry, Evidence Production, and Forensic Readiness
Example — ISAU-DS-DSS-1070: Evidence Generation, Retention, and Forensic
Controls
e Standardizes logging schemas for CI/CD, registry, and promotion pathways.
e Requires immutable Evidence Packs per release.
e Enforces retention, retrieval, and auditability of all evidence artifacts.
e Integrates detection and investigation workflows for pipeline-level incidents.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 45 of 67

Continuous Verification of Pipelines (Chaos, Resilience, and Negative Testing)
Example — ISAU-DS-DSS-1080: Pipeline Chaos Engineering and Resilience Testing
¢ Introduces negative tests (unsigned artifacts, revoked keys, malformed SBOM).
e Simulates runner compromise, registry failure, gate outages, and policy-controller
misconfigurations.
e Validates rollback, fail-closed behavior, and automated recovery.
e Records evidence of resilience tests in the Evidence Pack for audit.

Table J-5. Example Future Sub-Standards:

Sub-Standard Sub-Standard Name Focus Area
ID
ISAU-DS-DSS- Secure CI/CD Pipeline Architecture & Runner Runner Isolation & Pipeline
1010 Isolation Design
ISAU-DS-DSS- . . Policy Bundles, 1aC, Admission
1020 Policy-as-Code & laC Security Control
ISAU-DS-DSS- . . Testing Gates & Quality
1030 Automated Security Testing & Release Gates Thresholds

ISAU-DS-DSS- || Software Supply Chain Integrity (SBOM, Signing, Signing, Attestations, SBOM

1040 Provenance)
ISAU;%?E)DSS_ Secrets Management & Credential Hygiene Secrets, Short-Lived Credentials
ISAU-DS-DSS- Reproducible Builds & Release Governance Determinism, Manifests,
1060 Promotion

ISAU-DS-DSS- ||Pipeline Telemetry, Evidence Production & Forensic Evidence & Retention

1070 Readiness
ISAU-DS-DSS- Continuous Verification of Pipelines Piveline Resilience & Drills
1080 (Chaos/Resilience) P

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 46 of 67

Note on Traceability: When adopting or extending any Sub-Standard listed in Table J-
5, practitioners should maintain a traceability map that links each Sub-Standard
requirement to the Parent Standard’s §6 technical outputs, the selected ISAUnited Core
Principles in §7, the foundational standards in §8, and the control mappings in §9. Store
the traceability map in EP-10.4 and cross-link validation artifacts in EP-10.5 so
reviewers can verify implementation, validation, and evidence through §12 activities.
Maintaining clear traceability reinforces defensibility, supports audit readiness, and
ensures alignment with the architectural invariants defined by ISAU-DS-DSS-1000.

Development and Approval Process

ISAUnited uses an open, peer-driven annual process to propose, review, and publish
sub-standards:
e Open Season Submission — Proposals must cite which §6 outputs and §7
principles they extend, plus NIST/ISO clauses from §8 and control mappings
from §9.
e Technical Peer Review — Evaluate engineering rigor, testability, scope clarity,
and cross-domain consistency (IAM, CEK/CKM, MDR, Cloud/Compute).
e Approval & Publication — Assign identifier, version, and publish as an actionable
extension of ISAU-DS-DSS-1000.

Sub-Standard Deliverables (normative)

Each sub-standard Must include:

¢ Inputs (Requirements): Preconditions (from §5) depend on.

e Outputs (Specifications): Concrete factory behaviors and thresholds (SLOs) tied
to §6.

e Verification/Validation: Named tests and acceptance criteria tied to §12 (e.g.,
unsigned artifact rejection, deterministic rebuild parity, key-rotation drills).

e Evidence: Artifact list and storage location (Evidence Pack ID), including logs,
SBOMs, signatures, attestations, and approvals.

e Standards Mapping: DSSR-ID/Spec to NIST/ISO clause (from §8) to Controls
(from §9) to Test-ID to Evidence Pack ID.

e Interfaces: Explicit delineation of what is enforced in delivery (this standard) vs.
runtime platforms (Cloud/Compute, MDR) and crypto parameters (CEK/CKM).

5

N\ Practitioner Guidance:
\‘PW. _

= | Sub-Standards Must remain vendor-neutral, measurable, and enforceable through
code-based controls. Favor organization-wide templates, mandatory pipeline jobs,

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 47 of 67

signing and attestation policies, and admission-control rules over descriptive or
guidance-only text. Negative tests such as unsigned artifact attempts, revoked-key
scenarios, malformed SBOM submissions, or runner-reuse detections Must be
treated as release blockers unless a time-bounded exception with compensating
controls has been explicitly approved and recorded in the Evidence Pack. All Sub-
Standards Must define clear inheritance from the Parent Standard, trace their
controls to §6 outputs and §12 verification tests, and update Evidence Pack
references whenever a policy, gate, or interface changes. Store mappings in EP-
10.4 and cross-link test outcomes in EP-10.5.

Section 12. Verification and Validation (Tests)

This section defines the structured evaluation methods necessary to ensure that
implemented controls, architecture, and engineering decisions align with this Parent
Standard. It mandates measurable, repeatable testing to confirm that solutions are
technically defensible and adhere to ISAUnited’s engineering discipline.

Verification confirms that the system has been implemented in accordance with the
Requirements (Inputs) in §5 and the Technical Specifications (Outputs) in §6.

Validation confirms the system performs effectively under real-world operating and
adversarial conditions.

Core Verification Activities

o Confirm that all §6 outputs are implemented in the target environment(s).

« Review and validate configuration baselines against engineering and security
benchmarks.

« Verify interoperability and integration points so new vulnerabilities are not
introduced.

e Conduct peer review of architecture diagrams, ADRs, pipeline definitions, and
control mappings.

Core Validation Activities

« Perform adversarial testing (e.g., BAS/ATT&CK scenarios, targeted pen testing,
red teaming) to measure defensive effectiveness.

o Validate security posture using automated and manual methods against relevant
threat models.

« Test operational resilience, including canary/rollback, recovery, and incident
response capabilities.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 48 of 67

e Measure performance of controls against defined SLOs (e.g., High/Critical at
merge = 0, KEV=0 at release, mTLS = 98%, rollback < 5 min).

Required Deliverables

1. Test Plans & Procedures — Scope, data sets, tools, and methods for verification
and validation.

2. Validation Reports — Results with pass/fail status and residual risk ranking.

3. Evidence Artifacts — Logs, screenshots, signatures/attestations, SBOMs, scan
outputs, TLS/mTLS captures, canary/rollback logs.

4. Corrective Action Plans — Remediation steps with owners and target dates before
acceptance.

Common Pitfalls to Avoid

« Treating verification as a documentation exercise. Verification is not a checklist
review. It must produce dated artifacts that prove that gates executed, that
enforcement occurred, and that failure conditions block promotion.

e Running validation only after major incidents. Validation must be scheduled and
repeatable. Adversary simulation and rollback drills should occur on a defined
cadence for in-scope services.

o Allowing tests to pass without proving fail-closed behavior. A passing report is
insufficient if it does not prove denial for negative cases. Include negative tests
such as unsigned artifacts, revoked signing keys, missing SBOMs, and policy
violations.

« Failing to validate deploy-time enforcement. Many organizations validate
scanning in Cl, but never validate admission enforcement. Verify-on-pull and
attestation checks must be exercised during a controlled test deploy.

o Confusing environment parity with functional similarity. Parity must include
authorization posture, transport controls, egress restrictions, and alignment of
logging schema. If staging lacks these controls, validation results are not
predictive.

o Accepting exceptions without time bounds or compensating controls. Any
bypass, suppression, or allowlist expansion must include a sunset date, a
compensating control, and evidence of review. Track exception outcomes as
SLO met or SLO not met.

« Mixing evidence across systems without traceability. Evidence must not be
scattered across build logs, ticketing systems, and storage accounts. Store V&V
artifacts in EP-10.5 and cross-link to EP-10.2 implementation proof.

« Failing to re-run impacted tests after changes. Any change to gate logic, signing
policy, admission rules, or transport profiles must trigger a re-execution of the
affected verification and validation activities and an update to the traceability
matrix.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 49 of 67

Measuring success without clear pass or fail criteria. Every test must define
objective thresholds and record outcomes in binary terms, SLO met or SLO not
met, with artifact links.
Skipping rollback drills. Rollback is a primary safety control in DevSecOps.
Validate rollback triggers and completion timing under controlled conditions and
retain the drill evidence.

Table J-6. Traceability Matrix — Requirements (§5) to Verification/Validation (§12)
to Related Technical Specs (§6):

Re Requirement Related
q g Verification (build-correct) Validation (works-right) §6
ID (summary)
Outputs
Version control with Protected branches configured; Sample repositories show
CODEOWNERS and required |[>2mP '€ '€POS
protected branches, : ; signed-commit rate at or
5.1 ;) review enforcement present; o . . 6.1
required reviews, and ;) above 95 %; unauthorized
- . signed-commit enforcement
signed commits . push or bypass attempts are
report available
blocked and logged
Pipeline definitions show fail- . .
CI/CD platform with closed gates for SAST, SCA, Seeded policy br(.aach fails
) merge or release; rollback
5.2 |lnon-bypassable gates ||laC checks, and image 6.2,6.10
. executes successfully
and rollback steps scanning, plus rollback .
o during a controlled test
definitions
release
Trustgd artifact registry Registry configuration enforces ||Deploy blocks, unsigned or
with signature) - - e
e O signature verification at publish |jun-attested artifact; SBOM
verification, SBOM . . ; : 6.2, 6.3,
53 . and pull; SBOM retention and attestation retrievable
retention, and] o 6.8
enabled; provenance or for 100 % of released
provenance or . : .
: attestation recording enabled artifacts
attestations
Central secrets platform ||Secret scanners enabled in pre- ||Seeded secret commit is
5.4 issuing short-lived commit and CI; token TTL policy ||blocked; token TTL 6.4
" ||scoped credentials with ||configured; audit logging enforced at 24 h or less; '
full auditability enabled for secret access rotation drill meets 15 min
objective
Application and API test SAS_T and_dynamlc .test policies ||Critical or ngh_ findings
o . configured; test environments before production equal
5.5 ||capability available for ired: . - AP horizati 6.5
ating wired; coverage expectations zero; authorization tests
9 documented prevent BOLA or BOPLA
failures in staging validation
Policy bundles referenced in
Policy-as-code pipeline; rulesets exist for Critical 1aC violations are
5.6 ||guardrails integrated for ||network, identity, cryptography, 6.2,6.7
i L : blocked at merge and
critical violations logging, and telemetry, and R
; deploy; drift control shows
platform hardening

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 50 of 67

Re Requirement Related
q q Verification (build-correct) Validation (works-right) §6
ID (summary)
Outputs
parity checks pass in
staging
Dependency and . .
container scanning SCA an.d image scan jobs Release blocks KEV items;
) present; KEV feed sync .
5.7 |integrated, KEV synced, ||” : C . base image age meets 6.3,6.6
. . evidence exists; base-image ; :)
base-image lifecycle ; . policy target; container
lifecycle policy documented :
enforced hardening checks pass
Threat modeling Threat model artifact exists; pull ||Review confirms mitigations
58 practice with pull request templates include a map to tests or enforcement 6.9
" |[request delta for delta field; mapped mitigations ||controls; delta reviewed '
architectural change documented prior to merge for
architectural PRs
Staging mirrors
production control Staging TLS, mutual TLS, M”E,”a' TLS coverage meets
) 98 % target, where in
posture for egress controls, and logging
5.9 . 2 2 .. |lscope, canary or 6.7,6.10
authorization, egress, schemas match production; drift . .
, A . progressive delivery passes
transport, and logging ||monitoring is configured ;
parity checks and rollback
schemas X
trigger tests
Unified logging schema Sc_hema vahdatprs c_onflgured; Evidence Pack exists for the
g evidence store is write-once or) .
5.10||and tamper-evident .) : last release; forensic replay ||6.8
. tamper-evident; retention .
evidence store X of gate and promotion
configured :
artifacts succeeds

How to use the matrix:

o Plan: Map each §5 input to at least one verification activity and one validation

activity tied to §6.

« Execute: Attach an Evidence Pack reference and record a clear outcome, SLO
met or SLO not met.

« Maintain: When a gate, signing policy, or transport profile changes, the mapping
Must be updated in the same change record and impacted tests re-executed.

Evidence Pack

Evidence Must be collected for Section 12 verification and validation activities in EP-
10.5 (Verification and Validation). Each verification and validation activity Must produce
at least one dated artifact demonstrating execution, result, and the measurement point
used for acceptance. Evidence Must be version-controlled and retained according to
organizational audit requirements.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 51 of 67

Minimum evidence expectations for EP-10.5 include:

« Test plan and procedure set covering verification and validation scope,
frequency, owners, and pass or fail criteria.

o Gate enforcement proof, including blocked merge records, blocked deploy
records, and negative test results for unsigned artifacts, revoked keys, or missing
SBOMs.

e Provenance and attestation validation results showing acceptance for valid
artifacts and denial for invalid artifacts.

e Environment parity validation results, including TLS and mutual TLS checks,
egress allowlist enforcement checks, and logging schema parity verification.

e Progressive delivery and rollback drill artifacts, including trigger conditions,
execution logs, and measured rollback completion time.

e Adversary simulation results were required by scope, including detection timing
and response timeline.

Entries in EP-10.5 Must cross-link back to EP-10.2 for implementation proof and to
Table J-6 rows for traceability.

@ Practitioner Guidance:

e Single source of truth. Store every test plan, result, and artifact under EP-
10.5 and cross-link implementation artifacts in EP-10.2.

e Binary outcomes. For each row in Table J-6, record SLO met or SLO not
met and link the exact artifact used for the determination. Any SLO not met
Must generate a corrective action record.

e Adversary parity. For internet-exposed services, run at least one adversary
simulation scenario per release and retain the alert timeline proving
detection within 10 minutes and rollback within 5 minutes when triggered.

o Change discipline. Any change to a gate, signing policy, admission policy,
or transport profile Must include updated verification steps in the next
release plan and refreshed artifacts in EP-10.5.

m Quick Win Playbook:

t—=—= | Title: Verification Drill for Supply Chain Admission Controls

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 52 of 67

Objective: Prove that deploy-time admission enforcement blocks unsigned,
tampered, or unattested artifacts and that the denial events are captured as
verification evidence.

Target: Validate that verify-on-pull, signature verification, and attestation validation
function correctly in a controlled test environment (§6.2, §6.3, §6.8).
Component/System: Artifact registry, signing and attestation service, CI/CD
deployment path, admission controller.

Protects: Prevents unsigned, tampered, or unattested artifacts from entering the
deployment chain and confirms enforcement prior to production releases.

Stops and Detects: unsigned image admission; invalid signature; missing or
malformed SBOM; revoked or expired signing keys; attestation-chain failures during
deploy.

Action: Configure verify-on-pull and attestation validation in the target environment.
Introduce a controlled negative test using an unsigned artifact, a signed but
modified artifact, a missing SBOM artifact, or an artifact signed with a revoked key.
Attempt deployment and confirm admission denial. Capture denial logs and
validation errors. Reattempt deploy with a valid artifact to confirm normal promotion
behavior.

Proof: Artifacts stored in EP-10.5 and cross-linked to EP-10.2 include signing
policy diffs, attestation bundles, denied admission logs, verify-on-pull output, SBOM
completeness checks, registry audit trails, and rollback events where triggered.

Metric: 100 % invalid artifacts blocked at deploy; 100 % valid artifacts verified on
pull; 0 successful deploys when signatures, attestations, or SBOMs are missing or
malformed.

Rollback: Restore prior admission policy only through a time-bounded exception
and retain all test artifacts and denial events as superseded evidence in EP-10.5.

Section 13. Implementation Guidelines

This section does not prescribe vendor-specific tactics. Parent Standards are stable,
long-lived architectural foundations. Here, we define how sub-standards and delivery
teams should translate the Parent’s intent into operational behaviors that are testable,
automatable, and auditable.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 53 of 67

Purpose of This Section in Sub-Standards

Sub-standards should use Implementation Guidelines to:

Translate architectural expectations from the Parent Standard into enforceable
runtime and pipeline behaviors.

Provide platform-agnostic practices that improve adoption, avoid failure, and
align with ISAUnited’s defensible design philosophy.

Highlight common failure modes and how to prevent them with measurable gates
and checks.

Offer repeatable patterns expressed as code that enforce controls, trust models,
and engineering discipline.

Open Season Guidance for Contributors

Contributors developing sub-standards should:

Align all guidance with the strategic posture in this Parent Standard.

Avoid vendor and product terms and express controls as requirements, tests,
and evidence.

Include lessons learned, including what fails, why it fails, and how the test proves
it.

Focus on repeatable engineering patterns rather than one-off guidance.

Provide minimal standards mapping that links the specification or control to the
NIST or ISO clause from §8 and the Evidence Pack reference.

Technical Guidance

A. Organizing Principles

1. Everything as code — Policies, configurations, infrastructure, pipelines,
runbooks, and tests should be version-controlled, peer-reviewed, and
promoted through environments with signed commits on protected branches.

2. Gated change — Every merge and deployment should pass automated, non-
bypassable security gates tied to quantitative acceptance criteria (see §6 and
§12).

3. Immutable, reproducible builds — Manual changes to artifacts or infrastructure
after build should be prohibited, and releases should be reproducible from
source with SBOMSs, signatures, and attestations.

4. Least privilege and time-bounded elevation — Pipeline identities, runners, and
deployers should use scoped permissions with time-bounded elevation.
Break-glass paths should be exceptional and fully audited.

5. Environment parity — Staging should mirror production controls for
authorization, egress, transport security, and logging schema so test results
are predictive. Drift should be monitored and reconciled.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 54 of 67

B. Guardrails by Pipeline Stage

1.

Pre-commit and local

Secrets scanning and commit signing should run locally and in Cl where
applicable.

Pre-commit hooks should run linters, unit tests, and basic SAST and
infrastructure as code checks.

Pull request and code review

CODEOWNERS approval should be required, and a threat model delta
should be recorded in the pull request template for material change.

SAST gates should fail on findings rated High or above, and coverage for
changed files should be defined and enforced.

Infrastructure policy evaluation should run for network, identity,
cryptography, and logging rules, and critical violations should block merge.
SBOM generation should occur as part of evaluation, including license
and vulnerability policy checks.

Build and package

Builds should use pinned versions and deterministic build definitions and
should not rely on latest tags or unverified remote scripts.

Images should use multi-stage builds, execute as non-root, drop
NET_RAW, and define seccomp or AppArmor profiles.

Artifacts should be signed and attested prior to publish, and SBOMs
should be stored with artifacts.

Transitive dependencies should be evaluated, and builds should fail on
KEV items or crypto-policy violations.

Pre-deploy and release

DAST and IAST should execute against pull request or staging
environments for internet-exposed services, along with API contract tests
using negative and positive cases.

Database migrations should include guardrails and an automatic backout
plan.

Drift detection should be integrated with change approval as code.
Progressive delivery should use blue-green or canary patterns with
defined health SLOs and automated rollback conditions.

Deploy and runtime

TLS 1.3 should be enforced at edges, and mutual TLS should be used for
service and administrative paths where required by architecture.
Certificate rotation should align with CEK requirements where applicable.
Egress allowlists should be defined per workload, and build and deploy
runners should be isolated with restricted outbound paths.

A unified logging schema should be enforced for build, deploy, and
runtime events, and logs should be stored in append-only or immutable
systems where available.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 55 of 67

¢ Runtime posture should include read-only root filesystem where feasible,
CPU and memory limits, and prevention of privilege escalation, including
CAP_SYS_ADMIN removal.

¢ Runtime instrumentation should be applied for critical paths where risk
justifies it.

6. Post-deploy validation and operations

e Continuous validation should be scheduled, including adversary simulation
scenarios, staging fault injection, and DR restore drills aligned to RTO and
RPO targets.

e Security SLOs should be tracked, including High and Critical findings at
merge equal to 0, KEV at release equal to 0, mutual TLS coverage at or
above 98 %, and rollback completion time under 5 minutes where
required.

e Release evidence should be generated for each promotion, including
configurations, SBOMs, signatures and attestations, scan reports, test
results, parity checks, canary and rollback logs, and ADR links.

C. Identity, Secrets, and Keys (nhormative alignment to §6)

o Key storage should use KMS or HSM boundaries where applicable, and
rotation should align with CEK requirements where required by scope.

e CI/CD identities should use dynamic, short-lived credentials. Long-lived
tokens should be avoided, secrets should be scoped to job and
environment, and logs should redact sensitive values.

e Secrets should not be stored in repositories or container layers. Runtime
injection and full auditability should be used for access.

D. Supply Chain Integrity

e Builds should originate from trusted sources, registries and package
repositories should be restricted, and signatures should be verified.

e Third-party artifacts should be quarantined and attested where required,
and license policy should be enforced.

¢ Build and deploy identities should be separated, and production write
privileges should not be granted to build jobs.

e Verify-on-pull should be enforced at deploy for deployable artifacts.

E. Measurement and Acceptance

« SBOM coverage should be 100 % of deployable artifacts, and promotions
should not proceed when SBOMs are missing.

« Container base images should be updated within 30 days, KEV exposure
at release should equal 0, and findings rated Critical or High should not
remain open for promoted releases.

o Mutual TLS coverage should meet the defined target for in-scope service
and administrative paths.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 56 of 67

o Pull request gates should enforce SAST High equals 0 and infrastructure
policy Critical equals 0, with evidence stored under the release Evidence
Pack references.

e Provenance should be present and verified for released artifacts through
signatures and attestations, and verify-on-pull should enforce validation at
deploy.

Common Pitfalls and the Engineered Countermeasure

1. Pipelines treated as advisory — Use non-bypassable gates, block merges and
releases on failure, and retain proof artifacts for review.

2. One-time scanning — Treat scans as gating controls with thresholds and enforce
coverage for changed files.

3. Unpinned dependencies and latest images — Pin and verify inputs and refuse
non-deterministic builds.

4. Containers running as root or with excessive capabilities — Enforce non-root
execution and restricted capabilities through policy-as-code.

5. Missing SBOMs and signatures — Block promotion without SBOMs, signatures,
attestations, and verify-on-pull enforcement.

6. Secrets in repositories or broad ClI variables — Block on detection, use short-lived
scoped credentials, and audit access.

7. Open egress and shared runners — Isolate runners, restrict outbound access,
and enforce allowlists per workload.

8. Drift and hot fixes outside code — Detect and reconcile drift, avoid manual
infrastructure changes, and record ADRs for material changes.

9. Canary without guardrails — Define health SLOs and rollback triggers and
validate rollback behavior on a defined cadence.

10.Weak crypto, expired certificates, or missing mutual TLS — Enforce CEK-aligned
transport profiles where applicable and measure mutual TLS coverage.

11.Skipping threat model deltas — Require pull request deltas and mapped
mitigations tied to tests for material change.

12.Green builds created by suppression — Alert on disabled rules and excessive
suppressions and require review with a sunset date.

13. Test data misuse — Mask or tokenize data and avoid live sensitive data in lower
environments.

14.License compliance blind spots — Enforce license policy as part of SBOM gates.

15.No rollback plan — Require automated rollback definitions and prove rollback
behavior prior to production promotion.

16.Log noise and schema drift — Validate schemas at ingest and alert on missing
required fields.

17.0verbroad break-glass — Require dual control, short TTL, full audit, and periodic
review of use.

18.Ignoring egress controls — Detect unexpected egress and block at policy
enforcement points.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 57 of 67

19. Credential mixing across environments — Separate principals and secrets per
environment and validate separation through policy.

20.No evidence — Each release should include Evidence Pack references linking §5
prerequisites, §6 outputs, and §12 verification artifacts.

@

Practitioner Guidance:

o Map at the clause level only. For each §6 output, add a mapping row that
lists the specification identifier, the NIST or ISO clause, how enforcement is
implemented, and the Evidence Pack reference.

o Keep mappings current. When a control or policy changes, update the NIST
or ISO citation in the same change record and store the diff under the
Evidence Pack references.

e Multi-regime environments. Where multiple clauses could apply, adopt the
strictest applicable requirement and record the rationale once in the
mapping sheet.

e Scope discipline. Reserve CSA CCM, CIS Controls, and OWASP for
Section 9 and do not list them as foundational standards in Section 8.

2

Quick Win Playbook:
Title: Pipeline Negative Testing to Enforce Fail-Closed Behavior

Objective: Prove that pipeline gates and deploy-time admission checks fail closed
for invalid artifacts and that denial evidence is captured for audit.

Target: Introduce a controlled negative test to confirm that non-bypassable pipeline
gates and verify-on-pull protections function consistently across environments
(§6.2, §6.3, §6.8).

Component/System: Cl pipeline, artifact signing service, registry, admission
controller, policy-as-code engine.

Protects: Prevents supply chain insertion by ensuring artifacts lacking signatures,
attestations, or SBOMs cannot enter promotion paths.

Stops and Detects: unsigned artifacts; missing SBOM; tampered signatures;
revoked signing keys; bypass of attestation or verify-on-pull policies.

Action: Inject an intentionally invalid artifact into a non-production promotion path
and execute promotion. Confirm fail-closed behavior at merge and deploy. Capture
denial outputs from CI, registry, admission controller, and verify-on-pull. Retest with

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 58 of 67

a valid artifact to confirm expected promotion behavior.

Proof: Artifacts stored in EP-10.2 and cross-linked to EP-10.5 include pipeline
failure logs, verify-on-pull denial outputs, policy-as-code evaluation results, and
attestation validation errors.

Metric: 100 % negative-test artifacts blocked at merge and deploy; O bypass
events; 100 % valid artifacts pass signature and provenance checks.

Rollback: Revert policy changes only through a time-bounded exception and retain
negative-test evidence as superseded artifacts under EP-10.5.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Appendicies

Appendix A: Engineering Traceability Matrix (ETM)

Page 59 of 67

This Engineering Traceability Matrix (ETM) links the DevSecOps and Secure SDLC
Engineering Parent Standard requirements to measurable technical specifications,
cybersecurity core principles, control mappings, and Verification and Validation
activities. It provides practitioners with a single view of what must exist, what must be
implemented, how it is tested, and how evidence is organized. This ETM also supports
flow-downs by showing how Parent Standard requirements translate into enforceable

outputs and testable acceptance evidence.

Evidence Pack alignment: Evidence supporting this ETM is organized using the five EP-
10 locations. For each row, primary acceptance evidence is captured in EP-10.5
(Verification and Validation results), with supporting artifacts referenced from EP-10.1

(readiness), EP-10.2 (implementation), EP-10.3 (foundational standards mapping), and
EP-10.4 (control mappings).

Reall Requirement Technical Core Control Verification Validation EP
IDq (In(:)uts) (§5) Specifications || Principles | Mappings || (Build Correct)||(Works Right)|| Refere
(Outputs) (§6) (§7) (89) (§12) (§12) nces
RP-12 Protected Unauthorized EP-10.5
Security as branches and push or bypass ||primary;
Code: F{P— required reviews |lattempts are EP-10.1
Version control 03 ’ CSA CCM configured. blocked and supporti
51 lland branch 6.1 Everything as Complete [|[CCC-03: Commit signing |[logged. Signed- |[ng; EP-
) rotection code governance Mediation: |ICIS v8 4 X enforcement commit rate at or|[10.2
P RP-15 ’ ' enabled. ADR above 95 % supporti
Evidence linkage required ||validated over ||ng; EP-
Production for material the rolling 10.4
changes. window. supporti
ng
Pipeline
definitions show ||Seeded gate Erlijr-r:aor'ys
RP-03 fall-clo_sed failures block EP-10.1
Complete execution for merge or supporti
6.2 Secure Mediation; SAST, promotion. ng; EP-
CI/CD platform | cline qates: RP-10 ’ ||CSA CCM ||dependency Rollback 10’2
with non- pIp g ! TVM-01; scanning, executes under ’ .
52 6.10 Post-deploy (|Secure s supporti
bypassable validation and Defaults: CIS v8 16.x;||infrastructure controlled na: EP-
security gates ’ CIS v8 4.x ||policy checks, conditions and g
rollback RP-14 : . 10.3
o and image meets defined .
Resilience . e o supporti
scanning. timing objectives)
& Recovery ng; EP-
Rollback where 10.4
definition exists ||applicable. ’ .
supporti
as code.
ng
Trusted artifact ||6.2 Secure RP-02 Zero CSA CCM Registry enforces ||Deploy rejects
53 registries and pipeline gates; Trust; RP- DCS-03: signature unsigned or EP-10.5
" ||provenance 6.3 Supply chain (|19 Protect CIS v8 2 X verification at unattested primary;
capability integrity and build ||Integrity; ' publish and pull. |lartifacts. Verify- [[EP-10.1

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 60 of 67

Reall Requirement Technical Core Control Verification Validation EP
IDq (In‘:)uts) (§5) Specifications || Principles || Mappings || (Build Correct) || (Works Right) || Refere
(Outputs) (§6) (§7) (89) (§12) (§12) nces
hygiene; 6.8 RP-15 SBOM retention |jon-pull supporti
Observability and ||[Evidence and attestation enforcement ng; EP-
evidence Production capture are proves artifact 10.2
enabled for integrity under ||supporti
release artifacts. ||promotion. ng; EP-
SBOMs and 10.3
attestations are ||supporti
retrievable for ng; EP-
100% of 10.4
released supporti
artifacts. ng
Seeded secret
Pre-commit and ||[commit blocked. ErITr-n1aO.5.
RP-01 Cl secret Token TTL primary,
. EP-10.1
Least scanning conforms to 24 h suoporti
Secrets and 6.4 Secrets and Privilege; CSA CCM |lenabled. Token ||or less where n pEP
5.4 ||pipeline identity C.I/CD identit RP-02 Zero (|IAM-05; CIS||TTL policies required. 18’2
management y Trust; RP- ||v8 5.x configured. Audit ||Rotation drill ’ .
. S supporti
15 Evidence logging is meets target na: EP-
Production enabled for secret|timing after the 18’4
access. compromise ’ .
. supporti
trigger.
ng
For in-scope
internet-exposed
RP-05 ||Test services, EE'1O'5.
CIS v8 16.x; . g primary;
Secure by environments and |[findings rated
C I OWASP L e g EP-10.1
Application and Design; RP- . ||policies are Critical or High .
s ASVS V2.x; : supporti
API test 6.5 Application 04 Defense OWASP configured to run ||do not pass na- EP-
capability security testing as||in Depth; . |[required test promotion. API 9:
5.5) ASVS V4 .x; ; : A 10.2
available for release RP-16 suites for in- authorization .
OWASP . supporti
release enforcement Make scope services. |[|tests detect)
. ||API Top 10 . ng; EP-
enforcement Compromis Gate wiring BOLA and
. API1, API2,) - 104
e Detection established for BOPLA failure .
; API5 o . supporti
Easier release decisions.||modes prior to n
deploy where 9
applicable.
Drift injections or||EP-10.5
misconfiguration ||primary;
RP-12 Policy bundles attempts are EP-10.1
Security as referenced in the |/detected and supporti
Policv-as-code 6.2 Secure Code; RP- pipeline. Critical |lhandled ng; EP-
and Y pipeline gates; 03 CIS v8 4.x; ||violations block |laccording to the ||10.2
5.6 infrastructure 6.7 Environment (|Complete ||[CSA CCM |merge and defined supporti
uardrails parity and Mediation; ||CCC-03 promotion. Drift |[response. Parity ||ng; EP-
9 transport controls {|RP-10 detection tooling ||checks validate |{10.3
Secure configured for that the staging ||supporti
Defaults declared scope. ||control posture |ing; EP-
is predictive of |[10.4
promotion. supporti
ng
Dependenc 6.3 Supply chain [|RP-06 CSA CCM ||Dependency and ||KEV items block
5.7 p 1y integrity and build ||[Minimize TVM-01; image scanning ||promotion. Base ||[EP-10.5
and container ; . ! . i
hygiene; 6.6 Attack CIS v8 4.x ||steps are present.|[image age primary;

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 61 of 67

Reall Requirement Technical Core Control Verification Validation EP
IDq (In‘:)uts) (§5) Specifications || Principles || Mappings || (Build Correct) || (Works Right) || Refere
(Outputs) (§6) (§7) (89) (§12) (§12) nces
security Dependency and ||Surface; KEV meets policy EP-10.1
readiness container security ||RP-19 synchronization |jtarget. Container||supporti
Protect evidence exists. ||posture checks |ng; EP-
Integrity; Base image validate non-root|[10.2
RP-10 lifecycle policy execution and supporti
Secure documented and ||restricted ng; EP-
Defaults applied. capabilities 10.3
where in scope. ||supporti
ng; EP-
10.4
supporti
ng
The review EP-10.5
RP-05 A threat model confirms that the ||primary;
Secure by artifact exists for ||mitigations map ||[EP-10.1
Design; RP- in-scope services.||to tests or supporti
Threat modeling ||6.9 Threat 13 Plan CSA CCM Pull request enforcement ng; EP-
5.8 ||practice and pull||modeling and pull ||Security CCC-03 templates include |(|controls. 10.2
request delta request delta Readiness; a delta Architectural pull {|supporti
RP-15 requirement for |[requests do not ||ng; EP-
Evidence architectural merge without a |[10.4
Production change. delta review supporti
where required ||ng
by scope.
Mutual TLS EP-10.5
g coverage meets ||primary;
RP-02 Zero : the target where |[EP-10.1
Trust; RP- Staging transport, ; . .
. required. Parity ||supporti
6.7 Environment |[14 egress controls, .)
. . o OWASP ; checks remain (|ng; EP-
Environmental ||parity and Resilience and logging \
. . IASVS stable over time. |[10.2
parity and transport controls;||& Recovery; . schema match .
59 V14.x; CIS . Canary or supporti
transport 6.10 Post-deploy (|RP-16 . production for the)
- v8 4.x; CIS controlled ng; EP-
controls validation and Make declared scope.)
. ||v8 8.x . g promotion 10.3
rollback Compromis Drift monitoring .
.) succeeds, and ||supporti
e Detection configured. back tri "EP
Easier rollback triggers ||ng; EP-
behave as 10.4
designed. supporti
ng
Forensic replay
RP-15 Unified logain succeeds using |[EP-10.5
Evidence schema dgegf;ingd retained primary;
Production; artifacts. EP-10.1
and enforced. - .
Logging schema . |IRP-16 CSACCM lEidence store || Vidence _||supporti
5.10 |land evidence 6.8 Observability (|Make SEF- integrit completeness is ||ng; EP-
’ and evidence Compromis ||01/SEF-02; grity consistent for 10.2
store . properties . .
e Detection ||CIS v8 8.x . releases in supporti
- configured.)
Easier; RP- . scope, ng; EP-
Evidence capture . .
19 Protect : supporting audit |[10.4
X paths validated. L .
Integrity and incident supporti
reconstruction. |jng

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 62 of 67

Appendix B: Evidence Pack Matrix

This summary matrix provides practitioners with a single, readable view of how the
DevSecOps and Secure SDLC Engineering Evidence Pack repository is organized for
Parent Standard adoption. Each Evidence Pack location corresponds to a core section
of the annex standard, enabling consistent evidence collection and review without
creating sub-standard evidence structures.

Evidence Pack alignment: EP-10 is the Evidence Pack repository for D10. Evidence is
organized into five section-aligned locations. EP-10.1 captures readiness artifacts for
Section 5, EP-10.2 captures implementation artifacts for Section 6, EP-10.3 preserves
clause-level foundational standards mappings for Section 8, EP-10.4 maintains external
control mappings for Section 9, and EP-10.5 contains Verification and Validation test
evidence for Section 12. Together, these five locations provide traceability from
prerequisites to implementation to proof.

EP

Layer Identifier

Purpose Evidence Categories Included

* Index and file structure
overview for EP-10.1 through
EP-10.5

» Evidence ledger listing section
Evidence Pack repository for D10. Serves [[reference, artifact name, date,

.) as the single entry point for adoption owner, and review status
EP Repository | EP-10 evidence and traceability across Sections || Traceability snapshot linking
5,6,8,9, and 12. inputs to outputs to tests and

Evidence Pack locations

« Change log capturing updates
to evidence sets and review
outcomes

» Branch protection settings,
required reviews, and commit
signing enforcement proof

* Cl and CD platform readiness
artifacts showing gate capability
and rollback readiness

* Registry configuration baseline
supporting signature verification
and artifact retention
expectations

* Secrets platform readiness
artifacts supporting short-lived

Captures readiness and prerequisite
evidence for Section 5 (Inputs).
Demonstrates that baseline capability
exists before implementation work begins.

Requirements |[EP-10.1

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 63 of 67

Layer

EP
Identifier

Purpose

Evidence Categories Included

credential issuance and audit
logging

* Policy-as-code readiness
artifacts for infrastructure
guardrails and drift enforcement
* Environment parity readiness
artifacts for staging and
production posture comparison
* Logging schema and evidence
store readiness artifacts
supporting retention and integrity
expectations

Technical
Specifications

EP-10.2

Captures implementation evidence for

Section 6 (Outputs). Demonstrates
controls are built, configured, and
enforced as engineered behaviors.

» Gate execution logs and
promotion outcomes for fail-
closed behavior

+ SBOM artifacts for deployable
releases and retention evidence
« Signatures, attestation bundles,
and verification outputs

* Verify-on-pull enforcement logs
and admission denial records for
invalid artifacts

* Runner isolation and restricted
egress validation outputs

« Secrets scanning outputs and
identity issuance and rotation
artifacts

* Environment parity and
transport validation artifacts

* Rollback definitions as code
and release decision records

Foundational
Standards

EP-10.3

Captures Section 8 alignment to the

adopted NIST and ISO baselines.

Provides clause-level mapping for design,
implementation, and validation reviews.

* Clause-level mapping sheet
linking §6 outputs to NIST and
ISO references

« Standards selection rationale
aligned to DevSecOps scope
areas such as supply chain
assurance and secure delivery
practices

+ Divergence notes and
compensating control statements
when applicable

* Mapping change history with

dates and the responsible owner

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 64 of 67

Layer

EP
Identifier

Purpose

Evidence Categories Included

* Cross-links to implementation
evidence in EP-10.2 and test
evidence in EP-10.5

Control
Mappings

EP-10.4

Captures Section 9 mappings to external
control frameworks. Shows how
DevSecOps outputs align to widely used
assurance catalogs without treating them
as foundational baselines.

+ Control mapping sheet linking
each external control to related
§6 outputs and §7 principles

» Framework version tracking
and update history

* Equivalence notes to prevent
duplicate mappings across
frameworks

* Exceptions and compensating
measures when a control
mapping is not applicable in the
declared scope

* Cross-links to EP-10.2
implementation artifacts and EP-
10.5 validation artifacts

Verification and

Validation

EP-10.5

Captures Section 12 test evidence and
acceptance records. Demonstrates build-
correct verification and works-right
validation with pass or fail outcomes and
remediation linkage.

* Test plans and procedures with
scope, prerequisites, and pass or
fail criteria

* Traceability ledger mapping
Table J-6 rows to test references
and artifact paths

« Verification artifacts such as
gate outputs, configuration
snapshots, and enforcement
proofs

+ Validation artifacts such as
negative tests for unsigned
artifacts, revoked keys, and
missing SBOMs

* Environment parity validation
outputs and rollback drill
evidence

* SLO snapshots supporting
acceptance decisions and
corrective action plans with re-
test results

» Change references linking tests
to the configuration or policy
change that triggered validation

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 65 of 67

Adoption References

NOTE: ISAUnited Charter Adoption of External Organizations.

ISAUnited formally adopts the work of the International Organization for Standardization
/ International Electrotechnical Commission (ISO/IEC) and the National Institute of
Standards and Technology (NIST) as foundational standards bodies, and the Center for
Internet Security (CIS), the Cloud Security Alliance (CSA), and the Open Worldwide
Application Security Project (OWASP) as security control-framework organizations.
This adoption aligns with each organization’s public mission and encourages use by
practitioners and institutions. ISAUnited incorporates these organizations into its charter
so that every Parent Standard and Sub-Standard is grounded in a common, defensible
foundation.

a) Foundational Standards (Parent level).
ISAUnited adopts ISO/IEC and NIST as foundational standards organizations.
Parent Standards align with these bodies for architectural grounding and
auditability, and extend that foundation through ISAUnited’s normative, testable
specifications. This alignment does not supersede ISO/IEC or NIST.

b) Security Control Frameworks (Control level).
ISAUnited adopts CIS, CSA, and OWASP as control framework organizations.
Control mappings translate architectural intent into enforceable technical controls
within Parent Standards and Sub-Standards. These frameworks provide
alignment at the implementation level rather than at the foundational level.

c) Precedence and scope.
Foundational alignment (ISO/IEC, NIST) establishes the architectural baseline.
Control frameworks (CIS, CSA, OWASP) provide enforceable mappings.
ISAUnited’s security invariants and normative requirements govern
implementation details while remaining consistent with the adopted
organizations.

d) Mapping.
Each cited control mapping is tied to a defined output, an associated verification
and validation activity, and an Evidence Pack ID to maintain end-to-end
traceability from requirement to control, test, and evidence.

e) Attribution.
ISAUnited cites organizations by name, respects attribution requirements, and
conducts periodic alignment reviews. Updates are recorded in the Change Log
with corresponding evidence.

f) Flow-downs.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Page 66 of 67

(Parent to Sub-Standard). Parent alignment to the International /ISO/IEC and
NIST flows down as architectural invariants and minimum requirements that Sub-
Standards must uphold or tighten. Parent-level mappings to CIS, CSA, and
OWASP flow down as implementation control intents that Sub-Standards must
operationalize as controls-as-code, tests, and evidence. Each flow-down MUST
reference the Parent clause, the adopted organization name, the Sub-Standard
clause that implements it, the associated verification/validation test, and an
Evidence Pack ID for traceability. Any variance requires a written rationale,
compensating controls, and a time-bounded expiry recorded with an Evidence
Pack ID.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

Change Log and Revision History

Page 67 of 67

|Review Date ”Changes HCommittee “Action HStatus
January 2026 ;tar?d.ards Standards Committee Publication Draft v1 published
evision
November Standards Technical Fellow Peer review Pending
2025 Submitted Society
Standards Task Group ISAU- Draft submitted Complete
October 2025 e vision TG39-2024
December gtea\:]edlsgﬁent Task Group ISAU- Draft complete Complete
2024 (Parent DO1) TG39-2024

End of Document

10.

Obsolete and withdrawn documents should not be used; please use replacements.

Copyright 2026. The Institute of Security Architecture United. All rights reserved

