

Defensible 10

Annex D
(Normative): D04-
Application Security
Architecture &
Secure Development
Technical Standard

Standards Committee
12-8-2025

Page 1 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

© 2025 ISAUnited.org. Non-commercial use permitted under CC BY-NC. Commercial

integration requires ISAUnited licensing.

Page 2 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

About ISAUnited

The Institute of Security Architecture United is the first dedicated Standards

Development Organization (SDO) focused exclusively on cybersecurity architecture and

engineering through security-by-design. As an international support institute, ISAUnited

helps individuals and enterprises unlock the full potential of technology by promoting

best practices and fostering innovation in security.

Technology drives progress; security enables it. ISAUnited equips practitioners and

organizations across cybersecurity, IT operations, cloud/platform engineering, software

development, data/AI, and product/operations with vendor-agnostic standards,

education, credentials, and a peer community—turning good practice into engineered,

testable outcomes in real environments.

Headquartered in the United States, ISAUnited is committed to promoting a global

presence and delivering programs that emphasize collaboration, clarity, and actionable

solutions to today's and tomorrow's security challenges. With a focus on security by

design, the institute champions the integration of security into every stage of

architectural and engineering practice, ensuring robust, resilient, and defensible

systems for organizations worldwide.

Page 3 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Disclaimer

ISAUnited publishes the ISAUnited Defensible 10 Standards Technical Guide to provide
information and education on security architecture and engineering practices. While
efforts have been made to ensure accuracy and reliability, the content is provided “as
is,” without any express or implied warranties. This guide is for informational purposes
only and does not constitute legal, regulatory, compliance, or professional advice.
Consult qualified professionals before making decisions.

Limitation of Liability

ISAUnited - and its authors, contributors, and affiliates - shall not be liable for any direct,
indirect, incidental, consequential, special, exemplary, or punitive damages arising from
the use of, inability to use, or reliance on this guide, including any errors or omissions.

Operational Safety Notice

Implementing security controls can affect system behavior and availability. First,
validate changes in non-production, use change control, and ensure rollback plans are
in place.

Third-Party References

This guide may reference third-party frameworks, websites, or resources. ISAUnited
does not endorse and is not responsible for the content, products, or services of third
parties. Access is at the reader’s own risk.

Use of Normative Terms (“Shall,” “Should,” “Must”)

• Must / Shall: A mandatory requirement for conformance to the standard.
• Must Not / Shall Not: A prohibition; implementations claiming conformance shall

not perform the stated action.
• Should: A strong recommendation; valid reasons may exist to deviate in

particular circumstances, but the full implications must be understood and
documented.

Acceptance of Terms

By using this guide, readers acknowledge and agree to the terms in this disclaimer. If

you disagree, refrain from using the information provided.

For more information, please visit our Terms and Conditions page.

https://www.isaunited.org/terms-and-conditions

Page 4 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

License & Use Permissions

The Defensible 10 Standards (D10S) are owned, governed, and maintained by the

Institute of Security Architecture United (ISAUnited.org).

This publication is released under a Creative Commons Attribution–NonCommercial
License (CC BY-NC).

Practitioner & Internal Use (Allowed):

• You are free to download, share, and apply this standard for non-commercial use

within your organization, departments, or for individual professional, academic, or

research purposes.

• Attribution to ISAUnited.org must be maintained.

• You may not modify the document outside of Sub-Standard authorship workflows
governed by ISAUnited, excluding the provided Defensible 10 Standards
templates and matrices.

Commercial Use (Prohibited Without Permission):

• Commercial entities seeking to embed, integrate, redistribute, automate, or
incorporate this standard in software, tooling, managed services, audit products,
or commercial training must obtain a Commercial Integration License from
ISAUnited.

To request permissions or licensing:
info@isaunited.org

Standards Development & Governance Notice

This standard is one of the ten Parent Standards in the Defensible 10 Standards (D10S)

series. Each Parent Standard is governed by ISAUnited’s Standards Committee, peer-

reviewed by the ISAUnited Technical Fellow Society, and maintained in the Defensible

10 Standards GitHub repository for transparency and version control.

Contributions & Collaboration

ISAUnited maintains a public GitHub repository for standards development.
Practitioners may view and clone materials, but contributions require:

• ISAUnited registration and vetting
• Approved Contributor ID
• Valid GitHub username

All Sub-Standard contributions must follow the Defensible Standards Submission

Schema (D-SSF) and are peer-reviewed by the Technical Fellow Society during the

annual Open Season.

Page 5 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Abstract

The ISAUnited Defensible 10 Standards provide a structured, engineering-grade

framework for implementing robust and measurable cybersecurity architecture and

engineering practices. The guide outlines the frameworks, principles, methods, and

technical specifications required to design, build, verify, and operate reliable systems.

Developed under the ISAUnited methodology, the standards align with modern

enterprise realities and integrate Security by Design, continuous technical validation,

and resilience-based engineering to address emerging threats. The guide is written for

security architects and engineers, IT and platform practitioners, software and product

teams, governance and risk professionals, and technical decision-makers seeking a

defensible approach that is testable, auditable, and scalable.

This document includes a series of Practitioner Guidance, Cybersecurity Students & Early-
Career Guidance, and Quick Win Playbook callouts.

Practitioner Guidance- Actionable steps and patterns to apply the technical
standards in real environments.

Cybersecurity Student & Early-Career Guidance- Compact, hands-on activities
that turn each section’s ideas into a small, verifiable artifact.

Quick Win Playbook- Immediate, evidence-driven actions that improve posture
now while reinforcing good engineering discipline.

Together, these elements help organizations translate intent into engineered outcomes

and sustain long-term protection and operational integrity.

Page 6 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Foreword

Message from ISAUnited Leadership

Cybersecurity is at a turning point. As digital systems scale, reactive and checklist-

driven practices do not keep pace with adversaries. The ISAUnited position is clear:

security must be practiced as engineered design, grounded in scientific principles,

structured methods, and defensible evidence. Our mission is to professionalize

cybersecurity architecture and engineering with standards that are actionable, testable,

and auditable.

ISAUnited Defensible 10 Standards: First Edition is a practical framework for that shift.

The standards in this book are not theoretical. They translate intent into measurable

specifications, controls, and verification, and enable teams to design and operate

resilient systems at enterprise scale.

About This First Edition

This edition publishes 10 Parent Standards, one for each core domain of security

architecture and engineering. Sub-standards will follow in subsequent editions,

contributed by ISAUnited members and reviewed by our Technical Fellow Society, to

provide focused, technology-aligned detail. Adopting the Parent Standards now

positions organizations for seamless integration of Sub Standards as they are released

on the ISAUnited annual update cycle.

Why “Defensible Standards”

Defensible means the work can withstand technical, operational, and adversarial

scrutiny. These standards are designed to be demonstrated with evidence, featuring

clear architecture, measurable specifications, and verification, so that practitioners can

confidently stand behind their designs.

Page 7 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Contents
Annex D (Normative): D04-Application Security Architecture & Secure Development 8

Section 1. Standard Introduction.. 10

Section 2. Definitions ... 11

Section 3. Scope.. 15

Section 4. Use Case .. 18

Section 5. Requirements (Inputs) .. 20

Section 6. Technical Specifications (Outputs) ... 22

Section 7: Cybersecurity Core Principles ... 27

Section 8: Foundation Standards Alignment .. 29

Section 9: Security Controls .. 32

Section 10: Engineering Discipline .. 37

Section 11. Associate Sub-Standards Mapping ... 42

Section 12: Verification and Validation .. 46

Section 13: Implementation Guidelines ... 51

Appendices .. 57

Appendix A: Engineering Traceability Matrix (ETM) ... 57

Appendix B: EP-04 Summary Matrix – Evidence Pack Overview 59

Page 8 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Annex D (Normative): D04-

Application Security Architecture

& Secure Development

Page 9 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

ISAUnited’s Defensible 10 Standards
Parent Standard: D04-Application Security Architecture & Secure Development
Document: ISAU-DS-AS-1000
Last Revision Date: December 2025
Peer-Reviewed By: ISAUnited Technical Fellow Society
Approved By: ISAUnited Standards Committee

Page 10 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Section 1. Standard Introduction

The Application Security Architecture & Secure Development Parent Standard (ISAU-

DS-AS-1000) establishes the engineering baseline for securing the application layer

end-to-end, including web and mobile applications, public and private APIs,

microservices, serverless functions, and event-driven backends. As a Parent Standard,

it defines shared terminology, scope, requirements (inputs), technical specifications

(outputs), and verification and validation expectations that subordinate sub-standards

will inherit. It is vendor-neutral and implementation agnostic, aligning with recognized

foundational frameworks (NIST, ISO/IEC) while extending them with normative, testable

specifications. The intent is to deliver a defensible, measurable, and auditable approach

to application-layer security across on-premises, cloud, and hybrid environments.

Objective

This standard establishes foundational principles for Application Security Architecture &

Secure Development (ISAU-DS-AS-1000), engineered to protect business logic,

interfaces, and data flows across modern application styles. It provides cybersecurity

architects, engineers, and software developers with a structured, defensible

methodology for building and operating applications that enforce security at trust

boundaries, within code paths, and at the first boundary (gateway/edge).

Emphasis is placed on:

• Defining trust boundaries and enforcing contract-true interfaces, including strict

request validation and response schema alignment (SRA) with OpenAPI/JSON

Schema/Proto, strict mode, and unknown-field rejection.

• Implementing explicit authorization at object, field, and function scope, and

enforcing least privilege across all mutating handlers and sensitive reads.

• Hardening token and session design (OAuth2/OIDC, PKCE, scoped claims,

rotation, and revocation) and validating tokens on every request.

• Eliminating injection and unsafe deserialization through canonicalization, schema

validation, context-correct output encoding, and safe serializers.

• Protecting data in code paths through classification, minimization, masking or

tokenization, and correct in-code cryptographic use via approved boundaries.

• Hardening client-facing surfaces (CSP with nonces or hashes, strict CORS,

CSRF defenses, clickjacking, and MIME protections) and resisting abuse (rate

limits, backpressure, SSRF egress controls).

• Generating structured, defender-useful telemetry and deterministic error

semantics with correlation identifiers to support monitoring, forensics, and

automated response.

Page 11 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Producing evidence—design artifacts, contract and abuse-case tests,

authorization proofs, and operational logs—that make application security

measurable and auditable.

By integrating these engineering-focused capabilities, this standard provides a

measurable and defensible framework for securing application architectures and code

across monoliths, microservices, serverless, and event-driven systems.

Justification

Enterprise applications span distributed APIs, microservices, clients, and serverless or

event-driven components. While this improves agility, it expands the attack surface in

ways that perimeter or pipeline controls alone cannot address. Persistent failure classes

include broken object, field, and function level authorization (BOLA/BFLA/BOPLA),

injection and unsafe deserialization, weak token and session semantics, SSRF via

server-initiated outbound requests, and leaky errors or logs that aid enumeration. High

delivery velocity further exposes gaps when security is bolted on rather than

engineered.

Security must be embedded as application requirements, enforced in code and at the

first boundary, and proven through tests and evidence tied to explicit acceptance

thresholds. This standard addresses these realities by unifying contract enforcement

(including SRA), authorization correctness, input and serialization safety, token and

session hardening, client-surface defenses, abuse resistance, telemetry, and evidence

into a cohesive application-layer architecture. It aligns with NIST and ISO/IEC at the

Parent level. At the same time, detailed control mappings to CSA CCM, CIS, and

OWASP are provided in Section 9 (Security Controls) and in associated sub-standards.

Through structured requirements, measurable outputs, and rigorous verification and

validation, teams can proactively secure applications—reducing the risk of exploits,

unauthorized access, and fragile error or telemetry semantics across hybrid, cloud-

native, and on-premises deployments.

Section 2. Definitions

Abuse Case — An adversarial user story that exercises edge cases or business logic to
confirm the application fails securely (e.g., object/field/function-level authorization).

Page 12 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

API Contract — The authoritative interface specification (OpenAPI/JSON
Schema/Proto) used to generate validators and tests; enforced in strict mode with
unknown-field rejection and bounds checks.

API Gateway (First Boundary) — The gateway/edge where authentication,
authorization, and contract/schema validation are enforced before requests reach
application code.

ASR-ID (Application Security Requirement ID) — A uniquely identified, testable
requirement (e.g., API-AUTH-xx, DATA-VAL-xx, TOKEN-xx) traced to code and tests.

Authorization Models — RBAC/ABAC/ReBAC decisions applied at object, field, and
function scope to enforce least privilege.

Bounds Checks — Numeric/range/enum validation applied to request and response
fields to prevent out-of-contract values.

BOLA / BFLA / BOPLA — Broken Object-, Function-, and Object-Property-Level
Authorization classes where identity is valid but access decisions are incorrect.

Business-Logic Abuse Suite — A named set of tests that exercise workflow and
sequencing abuse (e.g., excessive actions, bypass of step order) to validate invariants
beyond simple input validation.

Canonicalization — Normalizing inputs (paths, encodings, Unicode) prior to validation
and authorization to prevent alternate-representation bypass.

Client Interaction Hardening — Controls at the application boundary (CSP, strict CORS,
CSRF defenses, clickjacking/MIME protections, pagination/size/time limits, cache
controls, SRI where used).

Content Security Policy (CSP) — A response header restricting browser resource
loading/execution; uses nonces or hashes for dynamic content.

Correlation Identifier (trace_id) — A stable identifier propagated across
requests/responses and logs to link events and evidence.

CORS (Cross-Origin Resource Sharing) — Explicit, minimal cross-origin policy for
allowed origins, methods, and headers; validated at the first boundary.

CSRF Defense — Protections for state-changing endpoints (same-site cookies, anti-
CSRF tokens, per-request nonces).

Data Classification & Minimization — Assigning sensitivity levels; limiting collection, use,
and retention to what is strictly required.

Page 13 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Deterministic Error Template — User-facing error format that omits sensitive detail while
returning a correlation ID; full diagnostics appear only in logs.

DFD (Data Flow Diagram) — Diagram of components, data stores, and flows used to
locate trust boundaries and derive requirements/tests.

Defense in Depth — Layered controls at boundaries and in code (canonicalize →
validate → authorize → encode → log) so no single failure compromises the system.

Encoder-at-sink — The practice of applying context-appropriate output encoding
immediately before a rendering/execution sink (HTML/JS/CSS/URL/SQL) to prevent
injection.

Evidence Pack (EP-04) — The versioned bundle of artifacts for this annex (and child
packs EP-04.x) containing DFDs, contracts, ASR-IDs, tests, logs, and V&V evidence
proving conformance.

Evidence SLOs — Quantified acceptance limits used for validation (e.g., contract pass
rate = 100 %, CSP violation rate ≤ 0.1 % over 7 days).

File/Media Handling — Safe processing of uploads (type/size/extension checks, content
sniffing disabled, storage outside webroot, sandbox/AV where justified).

First Boundary (Gateway/Edge) — The application’s ingress control point where
contract enforcement, authentication, and authorization are applied before code
execution.

HSTS — HTTP Strict Transport Security; enforces HTTPS for defined max-age and
prevents downgrade/stripping.

Idempotency-Key — A unique, time-bounded token on mutating HTTP routes ensuring
once-only effects under retries.

IdP (Identity Provider) — The trusted issuer of identities and tokens (OAuth2/OIDC).
Ingest Schema Conformance — The requirement that events at telemetry ingest include
all required fields (ts, actor, action, resource, result, trace_id, control_id, data_class,
error_code) with a 100 % pass rate.

Input Validation — Whitelist-oriented checks (type/range/length/format/schema)
performed at every trust boundary before parsing or interpretation.

JWT — JSON Web Token used to carry claims; validated for issuer, audience, expiry,
algorithm, and signature on every use.

mTLS — Mutual TLS providing authenticated, encrypted service-to-service
communications.

Page 14 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Non-Functional Security SLOs — Measurable acceptance thresholds for security
behavior (e.g., log-redaction error rate, throttle/block rates).

OAuth2 / OIDC — Standards for delegated authorization and identity; include
scopes/claims, PKCE for public clients, and token introspection/revocation.

Output Encoding — Context-appropriate encoding (HTML/JS/CSS/URL/SQL
parameters) applied immediately before a sink to prevent injection.

Permissions-Policy — A response header that restricts access to browser features (e.g.,
camera, microphone, geolocation) to the minimum necessary.

PKCE — Proof Key for Code Exchange; protects public clients in OAuth2/OIDC
authorization code flow.

RASP (Runtime Application Self-Protection) — In-process instrumentation that
detects/blocks exploitation attempts within application execution paths.

Rate Limiting / Backpressure — Per-principal and per-route controls (token/leaky
buckets, circuit breakers) to bound resource consumption and resist abuse.

Referrer-Policy — A response header that controls how much referrer information is
sent with requests to other origins.

Response Schema Alignment (SRA) — Enforcement that responses conform to
declared schemas with type/enum/bounds checks; reject or normalize on mismatch.

Serialization/Deserialization Safety — Use of safe formats/libraries; allowlisted types;
size/time limits; gadget resolution disabled for untrusted data.

Session Management — Establishment, rotation, expiry, and revocation of
authenticated state; cookies set with Secure/HttpOnly/SameSite as applicable.

SIEM — Security Information and Event Management platform that ingests application
events for detection and investigation.

Sinks — Code paths where data is executed or rendered (DB queries, templates,
eval/exec, shell); require validation/encoding before use.

SLO (Service Level Objective) — Target threshold indicating acceptable security
behavior and validation success criteria.

SRI (Subresource Integrity) — A browser mechanism that verifies third-party script/style
assets against a cryptographic hash to prevent tampering.

Page 15 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

SSRF Protections — Outbound-request safeguards (egress allowlists,
metadata/localhost blocks, protocol/port restrictions, DNS pinning where supported).

STRIDE — Threat modeling method (Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, Elevation of privilege) used to derive requirements/tests.

Taint Tracking — Propagation of “untrusted” labels through code to ensure
validation/encoding occurs before sensitive sinks.

Template/Server-Side Injection Safety — Use of auto-escaping template engines and
parameterized DB/APIs; prohibition of dynamic evaluation/concatenation reaching
execution sinks.

Test-ID — Stable identifier for a verification/validation test case mapped to specific §6
outputs and ASR-IDs, with Owner and Frequency.

Threat-Model Delta — A concise record of how the threat model changes when routes,
contracts, tokens, or boundaries change, including impacted tests and evidence.

Token Design — Construction/handling of tokens (claims, scopes, audiences, expiry,
rotation, revocation, nonce/jti) and on-request validation.

Trust Boundary — A crossing between principals/processes/contexts with different trust;
requires authentication, authorization, validation, and observability.

Validate Sequence (Canonicalize → Validate → Authorize → Encode) — The required
order at boundaries to ensure safe handling before any sink.

Work Queue / State Store Hardening — Integrity (HMAC/AEAD) for messages/sessions
across boundaries; TTL/de-duplication/idempotency; schema enforcement.

Zero Trust (Application Layer) — No implicit trust between components; every request
is authenticated, authorized, validated, and logged at each hop.

Section 3. Scope

Modern applications span distributed web and mobile front ends, public and private

APIs, microservices, serverless functions, and event-driven backends. This creates

frequent trust-boundary crossings that cannot be secured by perimeter or pipeline

controls alone. The scope of ISAU-DS-AS-1000 covers the application layer end to end:

interface contracts, authorization decisions, input and serialization safety, token and

session semantics, client-interaction defenses, abuse resistance, data protection in

code paths, application-layer telemetry, and evidence production across monoliths,

Page 16 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

microservices, serverless, and event-driven systems deployed on-premises, in the

cloud, and in hybrid environments.

This Parent Standard defines the architectural expectations, engineering methods, and

technical guardrails required to achieve measurable, defensible application behavior. It

helps practitioners model trust boundaries, enforce contract-true interfaces (including

strict request validation and response schema alignment, SRA), verify authorization

correctness, eliminate injection and unsafe deserialization, harden tokens and sessions,

resist abuse and SSRF, and produce auditable evidence—while remaining language-,

framework-, and vendor-neutral.

Applicability

• Application Types and Styles: Web and mobile applications, public and private
APIs, microservices, service consumers, serverless functions, and event
processors.

• Environments: On-premises, single-cloud, multi-cloud, and hybrid deployments.

• Roles: Application architects, software engineers, API designers, AppSec
engineers, and reviewers accountable for application-layer security decisions and
evidence.

Key Focus Areas

• Trust Boundaries and Contracts: Define DFDs; enforce OpenAPI/JSON
Schema/Proto in strict mode with unknown-field rejection and bounds checks,
and require SRA for response schemas.

• Authorization Models and Enforcement: RBAC/ABAC/ReBAC decisions at object,
field, and function scope; deny-by-default on protected resources.

• Input, Serialization, and Encoding Safety: Canonicalize → validate → authorize
→ encode at every boundary; safe deserialization with allowlists and size/time
limits.

• Session and Token Security: OAuth2/OIDC with PKCE as applicable;
issuer/audience/scope validation per request; rotation, revocation, and replay
resistance.

• Data Protection in Code Paths: Classification and minimization;
masking/tokenization; correct in-code cryptographic use through approved
boundaries.

• Client Interaction Hardening: CSP with nonces/hashes, strict CORS, CSRF
defenses, clickjacking/MIME protections, pagination/size/time limits.

• Abuse Resistance and SSRF Controls: Per-principal/route throttles and
backpressure; egress allowlists, metadata/localhost blocks, protocol/port

Page 17 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

constraints.

• Application-Layer Telemetry and Errors: Structured events with required fields
(ts, actor, action, resource, result, trace_id, control_id, data_class, error_code);
schema-conformant ingest and upstream immutability.

• Evidence Production: Versioned Application Evidence Pack (ID) containing
architecture artifacts, contracts, tests (unit/contract/abuse), header/policy scans,
token/session drills, abuse/SSRF logs, and telemetry samples.

Exclusions & Interfaces (authoritative)

• CI/CD mechanics, artifact signing/attestation, SBOM/provenance, environment
parity, and promotion/rollback controls are governed by Annex J (DevSecOps &
Secure SDLC Engineering).

• Cryptographic module selection, key lifecycles, certificate issuance, and transport
policy profiles are governed by Annex I (CEK); Annex D specifies correct
cryptographic use in application code and at application boundaries.

• Detection engineering, SOC workflows, and incident playbooks are governed by
Annex H (MDIR); Annex D defines the application-layer events and semantics
that those functions consume.

Outcomes

By defining this scope, ISAU-DS-AS-1000 ensures that application security is:

• Defensible: Explicit trust boundaries, contract-true interfaces (request and
response), explicit authorization decisions, and auditable, test-proven behavior.

• Measurable: Acceptance thresholds tied to leading indicators—authorization
coverage on mutating handlers, contract pass rate, CSP violation rate, and
abuse throttle/block rate.

• Adaptive: Patterns apply consistently across monoliths, microservices, and
serverless with minimal redesign as systems evolve.

• Aligned: Clean interfaces to CEK (Annex I) and DevSecOps (Annex J),
consistent with organizational policy and foundational standards.

This scope provides the foundation for engineering applications that withstand modern
attack techniques at the code and interface layers while supporting product agility and
operational integrity.

Page 18 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Section 4. Use Case

Achieving resilient application security requires deliberate practice in real-world

systems—not just theoretical patterns. The following consolidated use case illustrates a

complex enterprise that operates distributed web applications and APIs. It surfaces

common application-layer weaknesses, maps them to targeted application controls, and

defines measurable outcomes. This links architecture decisions directly to defensible

results in production behavior.

Table D-1:

Field

Details

Use Case Name

Securing Web Applications and APIs Against Injection, Abuse, and Authorization

Flaws

Objective

Apply Zero-Trust Application Security to eliminate injection/serialization risks, prevent

BOLA/BFLA/BOPLA, and harden sessions/tokens—while producing application-layer

evidence that requirements are met.

Scenario

A fintech platform exposes multi-tenant web apps and public/private APIs. Reviews

show object/field/function-level authorization gaps, inconsistent input/contract

validation, fragile token/session handling, SSRF-prone server-initiated outbound

requests, and leaky error semantics that aid enumeration.

Actors

Application Security Architect; Product/API Owner; Lead Software Engineer; AppSec

Engineer; QA/Automation Engineer; Privacy Engineer; SOC Analyst

Challenges

Identified

• Authorization gaps (BOLA/BFLA/BOPLA)

• Inconsistent canonicalization/validation; unsafe deserialization

• Token/session TTLs too long; weak replay/fixation defenses; missing per-request

ISS/AUD/Scope checks

• Permissive CORS; missing CSP nonces/hashes; incomplete CSRF

• No per-principal throttles; missing SSRF egress controls

• Unstructured logs; revealing errors; missing trace_id/control_id

Technical

Solution

Page 19 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Field

Details

Trust Boundaries & Contracts: Define DFDs and trust zones; enforce OpenAPI/JSON

Schema/Proto in strict mode with unknown-field reject and bounds checks at the

gateway and in code; require response schema alignment (SRA). Authorization:

RBAC/ABAC/ReBAC; explicit object/field/function decisions on 100 % mutating

handlers; deny-by-default; require Idempotency-Key on POST/PUT/PATCH.

Input/Serialization: Canonicalize → validate → authorize → encode; disable unsafe

deserialization; allowlist types with size/time limits. Session/Token: OAuth2/OIDC

(+PKCE for public clients); validate issuer/audience/scope on every request; access-

token TTL ≤ 60 minutes; privileged inactivity ≤ 15 minutes; rotation/revocation ≤ 5

minutes; block replay/fixation. Client Surface: CSP with nonces/hashes; strict CORS;

CSRF; HSTS where applicable; clickjacking/MIME defenses; pagination/size/time

bounds. Abuse/SSRF: Per-principal/route rate limits and backpressure; SSRF egress

allowlists, metadata/localhost blocks, protocol/port constraints; DNS pinning where

supported. Telemetry & Errors: Structured events (ts, actor, action, resource, result,

trace_id, control_id, data_class, error_code); deterministic user errors with correlation

IDs; schema-conformant ingest = 100 %; upstream immutability. RASP (where

justified): Instrument critical paths to detect/block exploitation in-process with FP ≤ 1

% and ≤ 5 ms p50 overhead.

Expected

Outcome

(acceptance

thresholds)

• Authorization: 100 % mutating handlers and sensitive reads execute explicit

authorization; BOLA/BFLA/BOPLA suite = 100 % pass.

• Contracts: Contract/negative tests = 100 % pass on external routes; SRA response

checks pass for targeted services; Idempotency-Key enforced on all mutating routes.

• Injection/serialization: Critical injection/unsafe deserialization = 0.

• Tokens/Sessions: 100 % tokens validated per request (ISS/AUD/Scope);

TTL/rotation/revocation targets met; replay/fixation blocked with evidence.

• Client surface: CSP violation rate ≤ 0.1 % over 7 days; CSRF tests pass; HSTS

enabled where applicable.

• Abuse/SSRF: ≥ 95 % automated abuse throttled/blocked; SSRF attempts blocked

and logged.

• Telemetry: 100 % events include required fields; ingest schema conformance = 100

%; audit logs append-only/tamper-evident.

Evidence

(Application)

DFDs/trust-boundary maps; contract/negative and SRA test reports;

BOLA/BFLA/BOPLA suite results; idempotency duplicate-request tests;

token/session drill logs; header scans (CSP/CORS/CSRF/HSTS); abuse/SSRF

simulation logs; structured event samples with trace_id/control_id and ingest

conformance report; “SLO met / not met” sheet - all artifacts stored under the

Application Evidence Pack ID.

Page 20 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Key Takeaways:

• The direct mapping of application risks to engineering controls guarantees

actionable, measurable security improvements.

• Zero Trust and SSDLC drive consistent enforcement, testing, and monitoring

across complex application environments.

• Metrics and operational drill-down validate outcomes, supporting continuous

improvement and regulatory alignment.

Section 5. Requirements (Inputs)

A defensible application security architecture is grounded in clearly defined, actionable

inputs. These requirements establish the technical and procedural preconditions that

must be present before design and implementation proceed. Meeting these inputs

ensures engineering teams can produce measurable, auditable application-layer

outcomes.

5.1 Threat Modeling Practice & Artifacts
A documented method (e.g., STRIDE) must exist to produce DFDs, trust-
boundary maps, and an abuse-case catalog per application/service. Artifacts are
version-controlled and referenced in change reviews.
Proof: Link to current DFDs, trust-boundary map, and abuse-case list (EP-
04:/architecture/ or EP-04.1:/architecture/).

5.2 Application Security Requirement Catalog (ASR-IDs)
A maintained, testable requirement set must exist (e.g., API-AUTH-xx, DATA-
VAL-xx, TOKEN-xx, ERR-xx), each mapped to enforcement points and tests.
Proof: ASR-ID register (CSV/MD) showing spec → code location(s) → Test-IDs
(EP-04:/requirements/ or EP-04.1:/requirements/).

5.3 API Inventory & Contract Repository
All externally reachable and inter-service endpoints must be inventoried and
linked to authoritative contracts/schemas (OpenAPI/JSON Schema/Proto) in
strict mode with unknown-field rejection and bounds checks.
Proof: API inventory + contract repo URLs; CI job output showing strict-mode
enabled (EP-04:/contracts/).

5.4 Authentication & Authorization Baseline
The application must declare the authentication pattern (e.g., OAuth2/OIDC,
mTLS for service calls) and the authorization model (RBAC/ABAC/ReBAC) down
to object/field/function scope, with decision points and enforcement locations
identified.

Page 21 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Proof: Authn/z decision map per route/handler; policy snippets or guards in code
(EP-04:/authorization/).

5.5 Input/Serialization & Output-Encoding Standards
Language/framework-specific standards must exist for canonicalization,
validation, safe deserialization (allowlists, size/time limits), and context-correct
output encoding (HTML/JS/CSS/URL/SQL parameters). Approved
libraries/utilities are listed.
Proof: Coding standard + linter/static-rule config referencing approved libraries
(EP-04:/coding-standards/).

5.6 Data Classification & Privacy-by-Design
Data elements processed by the app must be classified; minimization and
masking/tokenization rules must be defined; and privacy requirements must be
captured as ASR-IDs and linked to code paths.
Proof: Data map with classification/retention; masking/tokenization rules (EP-
04:/data/).

5.7 Session & Token Lifecycle Policy
Rules must exist for token/session lifetimes, rotation/revocation, replay protection
(nonce/jti), cookie flags (Secure/HttpOnly/SameSite), and audience/scope
semantics; validation per request is specified.
Proof: Token/session policy; automated tests for TTL/rotation/revocation; cookie-
flag scanner results (EP-04:/tokens/).

5.8 Application-Layer Telemetry & Error Semantics
A structured logging schema is defined for security events (ts, actor, action,
resource, result, trace_id, control_id, data_class, error_code). User-facing error
templates avoid sensitive detail and include correlation IDs; upstream log
immutability is specified.
Proof: Logging schema, sample events, error templates, and immutability
settings (EP-04:/telemetry/).

5.9 Abuse-Resistance & Egress Safety Hooks
Per-principal/per-route throttles/backpressure and pagination/size/time bounds
are defined. Server-initiated outbound requests implement SSRF guards (egress
allowlists, metadata/localhost blocks, protocol/port constraints; DNS pinning
where available).
Proof: Gateway/app rate-limit policy; SSRF egress allowlist and enforcement
config (EP-04:/abuse-ssrf/).

5.10 Dependency & Component Provenance (Application View)
An inventory of in-app libraries/frameworks/engines (serializers, template
engines, JSON/XML libs, crypto calls) exists with version constraints and
approved usage notes. (Annex J handles SBOM/provenance; Annex D requires
the app-side inventory and policy.)

Page 22 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Proof: Dependency inventory with allow/deny and minimum versions; unsafe API
ban list (EP-04:/dependencies/).

Practitioner Guidance:

• Traceability first: For each ASR-ID (5.2), point to its contract location (5.3),
code enforcement, and named Test-ID. If you cannot draw this chain, the
input is not ready.

• Single sources of truth: Keep DFDs, contracts, coding standards, and
policies under EP-04 (or child packs EP-04.n).

• Pre-flight before §6: Contracts strict-mode enabled; explicit authorization
map for 100 % mutating handlers; token/session policy pinned; logging
schema and error templates finalized; abuse/SSRF hooks declared;
dependency inventory current.

• Fail-closed stance: Block merges/deploys when 5.3/5.4 are not satisfied;
when 5.5 standards are violated; or when mandatory telemetry/error
schema (5.8) is absent.

• Ownership: Assign an owner for each 5.x item inside EP-04; re-validate at
major releases and at least quarterly.

Section 6. Technical Specifications (Outputs)

These specifications translate the application security policy into measurable, testable

application behavior. Outputs are enforced in code, contracts, gateways under the app

team’s control, and the application-layer runtime. (Annex J. governs pipeline gates,

SBOM/provenance, and promotion controls).

Outputs must be:

• Measurable: validated by scans, logs, audits, or tests
• Actionable: implementation-ready, not policy slogans
• Aligned: traceable to §5 Requirements and sub-standards

6.1 Identity & Authorization in Application
• Explicit authorization decisions Must execute on 100% of mutating handlers

(create/update/delete) and sensitive reads; decisions are object/field/function-
level per the chosen model (RBAC/ABAC/ReBAC).

• Authorization test suite (BOLA/BFLA/BOPLA) Must pass 100% on every
external route and protected internal route.

• Sensitive functions MFA (where user-interactive) Must be required for
account/credential changes or high-impact actions.

Page 23 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Evidence: unit/integration/contract tests; handler inventory showing
authorization coverage.

6.2 API Boundary & Contract Enforcement

• Contract strictness: External and inter-service APIs Must enforce
OpenAPI/JSON-Schema/Proto contracts in strict mode; unknown fields
rejected; numeric/enum bounds checked. Contract pass rate = 100%.

• Idempotency for mutating routes: Idempotency keys Must be required for
client-initiated retries on create/update operations exposed over HTTP.

• Gateway policy: Authentication, authorization, and schema validation Must be
enforced at the first application boundary (gateway/edge).

• Response alignment (SRA): Responses Must conform to declared schemas
with type/enum/bounds checks; reject or normalize on mismatch.

• Evidence: contract test reports; gateway policy export; idempotency test logs.
• External webhooks/callbacks: Inbound webhooks Must be authenticated

(HMAC signature or mTLS), timestamped, and replay-protected; validate
source (domain or IP allowlist) and contract schema; reject on signature,
freshness, or schema failure.

• Evidence: webhook contract + signature verification tests; replay/clock-skew
negative tests (EP-04:/webhooks/).

6.3 Input, Serialization, and Output Encoding
• Canonicalize→Validate→Authorize→Encode Must be followed at every trust

boundary.
• Unsafe deserialization Must be prohibited; only allowlisted types with

size/time limits; deserialization gadget resolution = disabled.
• Context-correct encoding Must be applied at sinks (HTML/JS/CSS/URL/SQL

params).
• Injection SLO: Critical injection findings

(code/templating/SQL/NoSQL/LDAP/XPath) = 0.
• Evidence: negative tests; fuzz/grammar tests for parsers; code audit of

serializers/templaters.
• Unsafe API bans: Enforce an application-side allow/deny list for risky patterns

(e.g., dynamic eval/exec, unsafe reflection, raw SQL concatenation, unsafe
deserializers); block on violation in CI and fail at runtime guards where
feasible.

• Evidence: linter/static-rule config + violation reports; targeted unit tests for
banned patterns (EP-04:/serialization-safety/).

6.4 Data Protection in Code Paths
• Classification & minimization: Data elements Must be classified; collection

and retention minimized; masking/tokenization applied where specified.
• Cryptographic use in code: Only CEK-approved primitives and parameters;

keys never embedded in code or images; crypto operations performed
through approved service boundaries where feasible.

Page 24 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Logging redaction: Sensitive classes Must be redacted or tokenized in logs;
accidental PII in logs ≤ 0.1% over 7 days.

• Evidence: data map, masking rules, crypto call sites, redaction tests.

6.5 Session & Token Security

• OAuth2/OIDC flows Must validate audience, issuer, and scope/claims on
every request; PKCE required for public clients.

• Token/Session lifetime: Access token TTL ≤ 60 minutes; inactivity timeout for
privileged sessions ≤ 15 minutes; refresh rotation on use; revocation honored
within ≤ 5 minutes.

• Replay/nonce: Nonce/jti and anti-replay checks required for state-changing
flows.

• Evidence: token inspection tests, revocation/rotation drill logs, cookie flag
verification (Secure/HttpOnly/SameSite).

6.6 Client Interaction Hardening

• CSP: Content-Security-Policy with nonces/hashes enabled on pages
rendering dynamic content; CSP violation rate ≤ 0.1% over 7 days.

• HSTS: HTTP Strict Transport Security Must be enabled where applicable to
prevent downgrade/stripping.

• CORS: Explicit, minimal origins/methods/headers; preflight validation aligned
to the trust model.

• CSRF: Required protections (same-site cookies + anti-CSRF tokens) for
state-changing endpoints.

• Clickjacking/MIME: X-Frame-Options/Frame-Ancestors and X-Content-Type-
Options/NO-SNIFF enabled where applicable.

• Evidence: header scanner output, CSP report samples, CSRF test cases.
• Request bounds: Enforce maximum request size and execution time on

relevant endpoints; list/paginated routes Must enforce explicit page size and
upper bounds.

• Referrer-Policy: Set an explicit, minimal Referrer-Policy (e.g., no-referrer,
strict-origin-when-cross-origin) aligned to the threat model.

• Permissions-Policy: Set Permissions-Policy to disable unused browser
features (camera, microphone, geolocation, etc.) by default.

6.7 Abuse Resistance & SSRF Controls
• Rate limits/backpressure: Per-principal and per-route limits for authentication

and sensitive operations; ≥ 95% automated abuse throttled or blocked at the
app boundary.

• SSRF mitigation: Server-initiated fetches Must use egress allowlists,
metadata/localhost blocks, protocol/port constraints, and DNS pinning where
available.

• Evidence: throttle/abuse test logs, SSRF block logs, allowlist policy export.

6.8 Application Telemetry & Errors

Page 25 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Structured events: Security-relevant events Must include ts, actor, action,
resource, result, trace_id, control_id, data_class, error_code.

• Error semantics: User-facing errors Must avoid sensitive detail yet include
correlation IDs; defender-useful diagnostics Must be present in logs.

• Ingest conformance: Event schema conformance at telemetry ingest Must be
100% for required fields (ts, actor, action, resource, result, trace_id,
control_id, data_class, error_code).

• Immutability: Application audit logs Must be append-only/tamper-evident
upstream.

• Evidence: log samples, schema validators at ingest, immutability
configuration.

6.9 State Stores, Queues, and Caches

• Integrity & isolation: Messages and session state Must carry integrity checks
(e.g., HMAC/AEAD) where trust boundaries exist; isolate by
tenant/environment.

• TTL & replay: Enforce TTL, unique keys, and de-duplication/idempotency for
at-least-once flows.

• Schema: Message schema validation Must be enforced; schema pass rate =
100%.

• Evidence: queue/cache config, replay tests, schema validator results.

6.10 Risk-Based RASP / In-App Controls (where justified)

• For high-risk code paths, RASP or equivalent in-process checks May be
deployed in block or report mode with a false positive rate ≤ 1% and latency
impact ≤ 5 ms p50.

• Evidence: RASP policy, block/report event samples, latency measurements.

Practitioner Guidance:

• Trace from ASR to Test: For every ASR-ID, point to the code location(s), the
contract/gateway policy (if any), and the named tests proving the behavior
(unit/contract/abuse). Record Test-ID, Owner, Frequency, and link artifacts
to EP-04.

• Prefer contracts over code paths: Enforce schema/contract checks at the
first boundary; retain code-level validation/authorization for depth.

• Measure what matters: Track four indicators per app—authorization
coverage (mutating handlers), contract pass rate, CSP violation rate, abuse
throttle/block rate. Store weekly snapshots under EP-04.

• Defer to CEK/MDIR/J where appropriate: Use CEK for crypto parameters
and key handling, MDIR for downstream detection workflows, and Annex J
for pipeline gates/promotion. Annex D owns application semantics and
tests.

Page 26 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Quick Win Playbook

Title: Contract-Strict + Idempotency Gate for a High-Value API

Objective: Prevent malformed or replayed requests from reaching application code
by enforcing strict request/response contracts and once-only effects on mutating
routes.

Target: Enforce strict contract validation and idempotency on one high-value API
service (§6.2, §6.3).

Component/System: API gateway (first boundary) + application service
(OpenAPI/JSON Schema/Proto).

Protects: Application from injection/serialization flaws, malformed requests, and
duplicate side effects.

Stops/Detects: Unknown fields, out-of-bounds values, response schema (SRA)
mismatches, and client retries without Idempotency-Key.

Action:

• Enable strict mode at the gateway (unknown-field reject, numeric/enum
bounds checks); deploy generated validators in the service.

• Require Idempotency-Key on POST/PUT/PATCH; define expected behavior
for missing/duplicate keys (for example, 400/409; no second side effect).

• Add SRA checks for all success/error responses; reject or normalize on
mismatch.

• Run a smoke test: (1) valid request → allow; (2) unknown field/out-of-
bounds → 4xx; (3) duplicate POST with same Idempotency-Key → no
second side effect; (4) intentionally malformed response →
blocked/normalized with logged event.

Proof: Contract manifest; gateway policy export; contract/negative and SRA test
results (valid/invalid/idempotent cases); deny/validation logs with trace_id/control_id
→ EP-04.1.

Metric: Contract/negative tests pass rate = 100 % on targeted service; 100 %
mutating routes enforce Idempotency-Key; 100 % of responses pass SRA;
unknown-field/bounds/SRA violations produce 4xx with trace_id/control_id in logs.

Rollback: Toggle gateway strict mode and the Idempotency-Key requirement off
for the service; revert the validator middleware commit; record the exception with
owner and expiry in EP-04.1.

Page 27 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Section 7: Cybersecurity Core Principles

The following ISAUnited Cybersecurity Core Principles provide the engineering

foundation for a defensible application security architecture. Each principle Must be

applied to the design, coding, and operation of applications and APIs—so that trust

boundaries, authorization, data handling, and telemetry are provably correct at the

application layer.

Table D-2:

Principle Name

Code

Applicability to Application Security Architecture & Secure

Development

Least Privilege
ISAU-

RP-01

Enforce minimum necessary permissions in code and at interfaces; apply

RBAC/ABAC/ReBAC decisions at object, field, and function scope on

100% of mutating handlers.

Zero Trust
ISAU-

RP-02

Require explicit authentication and authorization on every boundary

crossing (user→app, service→service); never rely on network location for

trust.

Complete Mediation
ISAU-

RP-03

Validate, authorize, and log every access to protected resources after

canonicalization and before execution; no cached authorizations without

re-checks on sensitive actions.

Defense in Depth
ISAU-

RP-04

Layer controls at boundaries (contract/schema validation, authorization,

output encoding, rate limits, SSRF egress allowlists) so that a single

control failure does not compromise the system.

Secure by Design
ISAU-

RP-05

Derive requirements from DFDs and threat models; encode them as ASR-

IDs and tests (unit/contract/abuse) that prove application behavior.

Minimize Attack

Surface

ISAU-

RP-06

Remove unused routes/features; restrict parsers, serializers, and MIME

types; apply strict CORS/CSP; disable verbose errors and debug

endpoints in production.

Page 28 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Principle Name

Code

Applicability to Application Security Architecture & Secure

Development

Secure Defaults
ISAU-

RP-10

Deny-by-default routes, strict schema mode, safe deserialization off by

default, cookies with Secure/HttpOnly/SameSite; explicit action required

to relax protections.

Resilience &

Recovery

ISAU-

RP-14

Design for graceful failure: idempotency keys, circuit breakers,

backpressure; ensure error semantics do not leak state while enabling

rapid recovery.

Evidence

Production

ISAU-

RP-15

Emit structured security events with trace_id and control_id; maintain

tamper-evident audit trails that support forensics and verification of

requirements.

Cryptographic

Agility

ISAU-

RP-17

Use CEK-approved crypto via abstractions; prevent algorithm lock-in so

app code can adopt new suites without redesign.

Protect

Confidentiality

ISAU-

RP-18

Classify data; minimize collection; apply in-code protections

(AEAD/HMAC via approved services); redact sensitive fields in logs and

errors.

Protect Integrity
ISAU-

RP-19

Validate contracts and signatures; apply integrity checks (HMAC/AEAD)

for state stores, queues, and messages crossing trust boundaries.

Protect Availability
ISAU-

RP-20

Bound work and memory per request; throttle abusive patterns; ensure

business operations hold under adverse inputs without breaking

invariants.

Make Compromise

Detection Easier

ISAU-

RP-16

Design events, error codes, and correlation IDs so defenders can quickly

detect abnormal flows (e.g., failed object-level authorization, contract

violations, SSRF blocks).

Practitioner Guidance:

These cybersecurity core principles must be systematically integrated into every
facet of application security engineering and software development—from
architectural blueprints to automated pipelines and operational runbooks.

Page 29 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Trace principle → spec → test: For each principle in Table D-2, map it to
one or more §6 outputs and a named test in §12. Example: ISAU-RP-03 →
6.2 Contract Enforcement → “Contract-Strict-All-External” test. Record the
artifact path in the Application Evidence Pack ID.

• Make it measurable: Convert principle intent to an acceptance threshold
(e.g., RP-01: “authorization present on 100% mutating handlers”; RP-06:
“unknown fields rejected on 100% external routes”). Fail builds or block
releases when not met (Annex J will consume these tests).

• Design first, then code: Derive ASR-IDs from DFDs and abuse cases; place
the enforcement point in code and at the first boundary (gateway/edge) for
depth.

• Review exceptions: Any temporary relaxation (e.g., broader CORS for a
pilot) Must include scope, compensating control, owner, and sunset date;
keep the exception record with the Application Evidence Pack.

Section 8: Foundation Standards Alignment

This section identifies the internationally recognized foundational frameworks adopted

by ISAUnited for Application Security Architecture & Secure Development. ISAUnited

adopts NIST and ISO/IEC as its foundational baselines. These provide the life-cycle,

governance, and control context that this Parent Standard refines into application-layer,

testable specifications.

Purpose and Function

• Demonstrate alignment with NIST/ISO requirements and guidance.

• Bridge compliance baselines to application-layer engineering specifications in

this annex.

• Provide a stable reference for sub-standards to map requirements and evidence

at the clause level.

Table D-3:

Framework

Standard /

Reference

Applicability to Application Security Architecture & Secure

Development

NIST
SP 800-218

(SSDF)

Secure Software Development Framework — lifecycle tasks for

requirements, design, coding, verification, and release that underpin app-

layer engineering.

Page 30 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Framework

Standard /

Reference

Applicability to Application Security Architecture & Secure

Development

NIST
SP 800-53

Rev.5

Security & Privacy Controls — SA, AC, AU, IA, SC, SI families most

relevant to application requirements (authn/z, input validation, logging,

data protection).

NIST
NIST SP 800-

160 Vol. 1

Systems Security Engineering — gives the engineering/V&V discipline we

invoke in §§10 and 12 (requirements→evidence→assurance) yet stays

technology-agnostic and application-layer compatible.

NIST
SP 800-204

Series

Microservices/API/Kubernetes security strategies — guidance for API trust

boundaries, service identity, and app-centric zero-trust patterns.

NIST SP 800-207

Zero Trust Architecture — continuous verification and policy enforcement

at application boundaries (user→app, service→service).

NIST

SP 800-63

Series (pin

63B)

Digital Identity Guidelines — 63B informs authentication/session lifecycle

used in §6.5 (AALs, session binding, verifier requirements).

ISO/IEC
27001:2022 /

27002:2022

ISMS requirements and control catalog — organizational and technical

controls operationalized at the application layer (access control, logging,

secure development).

ISO/IEC 27034-1

Application Security — process framework for designing, implementing,

and evaluating application security throughout the SDLC.

ISO/IEC
ISO/IEC

27034-2

Organization Normative Framework for Application Security —

complements 27034-1 by specifying how an organization operationalizes

app-sec processes that map cleanly to our Evidence Pack and §12 V&V.

ISO/IEC

27034-6

(optional but

helpful)

Organizational application security processes — supports §12 V&V

practices and Evidence Pack discipline.

ISO/IEC 27036-1

Page 31 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Framework

Standard /

Reference

Applicability to Application Security Architecture & Secure

Development

Information Security for Supplier Relationships — Supplier/Software

Assurance Interfacing with Application Dependency Risk.

ISO/IEC
29147 (optional

per ISO)

Vulnerability Disclosure — coordinated intake/communication for issues

surfaced by §12 testing.

ISO/IEC
30111 (optional

per ISO)

Vulnerability Handling — internal processing, triage, and remediation

workflows aligned to §12 corrective actions.

NOTE: ISAUnited Charter Adoption of Foundational Standards.

Per the ISAUnited Charter, the institute formally adopts the International Organization
for Standardization/International Electrotechnical Commission (ISO/IEC) and the
National Institute of Standards and Technology (NIST) as its foundational standards
bodies, consistent with their public encouragement of organizational adoption. Parent
Standards align to ISO/IEC and NIST for architectural grounding and auditability, and
this alignment flows down to Sub-Standards as invariants and minimum requirements
that may be tightened but not weakened. ISAUnited does not restate or speak on behalf
of ISO/IEC or NIST; practitioners shall consult the official publications and terminology
of these organizations, verify scope and version currency against the latest materials,
and implement controls in a manner consistent with ISAUnited security invariants and
the requirements of this standard.

Sub-Standard Expectations

Sub-standards developed under this Parent Standard Must:

• Cite specific clauses from Table D-3 (e.g., NIST SP 800-218 Task PS.1; ISO/IEC

27034-1 clause X.Y) for every normative output they extend.

• Convert those clauses into testable application behaviors (requirements → code

enforcement points → named tests in §12) with explicit acceptance thresholds.

• Document any divergence with compensating controls, a rationale, and a sunset

date; include passing verification artifacts in the Application Evidence Pack.

• Provide a short mapping table inside the sub-standard: ASR-ID / Spec →

Framework → Clause → Evidence Pack ID.

Page 32 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Practitioner Guidance:

Practitioners should always map technical controls, process documentation, and
audit artifacts directly to these frameworks in design, delivery, and verification
phases. When designing sub-standards or organizational supplements:

• Foundations scope only: Use this mapping for NIST and ISO/IEC
foundations in §8. Controls frameworks (OWASP/CIS/CSA) map in §9.

• Map at clause level with ownership: For each §6 output (e.g., 6.2 Contract
Enforcement, 6.5 Session & Token Security), add a row to your mapping
sheet with columns: ASR-ID / Spec → Framework → Clause/Task ID →
Standard version/date → Enforcement point (code or gateway) → Test-ID
→ Owner → Frequency → Evidence (EP-04 path).

• Use SSDF as the backbone: Ensure every relevant NIST SP 800-218 task
is backed by a concrete application behavior and a passing §12 test
(unit/contract/abuse), with Test-ID recorded.

• Pin specifics where required: When referencing the Digital Identity suite, pin
SP 800-63B for authentication/session items in §6.5. (API Top 10 version
pinning belongs in §9, not here.)

• Keep mappings current in PRs: When a requirement or enforcement point
changes, update the clause/task reference in the same PR, include the diff,
and store artifacts under EP-04.

• Trace to Table D-6: For each row, record the corresponding Table D-6 entry
(Requirement ID and Related §6 Outputs) so auditors can follow clause →
spec → enforcement → test → evidence.

• Divergence discipline: If a clause cannot be met verbatim, document the
compensating control, the rationale, and a sunset date, then include
verification proving equal or stronger application-layer effect (evidence in
EP-04).

Section 9: Security Controls

This section specifies the technical control families and control references enforced by

the Application Security Architecture & Secure Development Parent Standard. These

mappings ensure traceability between application-layer requirements and recognized

industry frameworks—providing explicit, actionable guidance for engineers, reviewers,

and auditors.

Page 33 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Purpose and Function

Security controls bridge architectural objectives and actionable safeguards at the

application layer—protecting confidentiality, integrity, availability, authentication,

authorization, and auditability in code and interfaces.

By mapping to CSA CCM, CIS Controls v8, and OWASP ASVS/API Top 10, ISAUnited

ensures:

• Alignment with widely adopted best practices,

• Interoperability across stacks, languages, and patterns,

• Audit-ready traceability into sub-standards and project implementations.

Implementation Guidance

Sub-Standard Authors and practitioners Must:

• Reference controls from CSA CCM, CIS Controls v8, and OWASP (ASVS/API

Top 10) that are directly enforced in the application.

• Provide framework acronym, control family/ID, and a concise, implementation-

oriented description.

• Map each control to one or more §6 outputs and to named tests in §12

(Verification & Validation).

• Favor enforceable controls (contract checks, authorization decisions,

header/policy settings, validation/encoding) over policy-only statements.

Table D-4. Control Mappings for Application Security Architecture & Secure

Development:

Framework Control ID

Control name/description

(application-layer)

Primary linkage to §6 outputs

CIS v8 3.x (Data Protection)

Application-level data
classification, minimization,
masking/tokenization, and log
redaction.

6.4 Data Protection, 6.8
Telemetry & Errors

CIS v8
6.x (Access Control
Management)

Authorization policy definition and
enforcement at application
boundaries and in code (least
privilege, deny-by-default).

6.1 Identity & Authorization

CIS v8
16.x (Application
Software Security)

Define app security requirements;
enforce input validation, authn/z,

6.1 Identity & Authorization; 6.2
Contract Enforcement; 6.3

Page 34 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Framework Control ID

Control name/description

(application-layer)

Primary linkage to §6 outputs

error handling, and secure coding
across the SDLC (app scope).

Input/Serialization/Encoding; 6.6
Client Hardening

CIS v8
8.x (Audit Log
Management)

Emit, protect, and retain
application security logs with
required fields; support forensics
and correlation.

6.8 Telemetry & Errors

CIS v8
18.x (Penetration
Testing)

Perform application-layer testing
(authorization abuse, injection,
deserialization) and track
remediation results.

6.1; 6.2; 6.3; 6.7

Framework Control ID

Control name/description

(application-layer)

Primary linkage to §6 outputs

CSA CCM
AIS (Application &
Interface Security)

Apply secure application design,
input/contract validation, and
interface protections at exposed
and inter-service APIs.

6.2 Contract Enforcement; 6.3
Input/Serialization/Encoding

CSA CCM
IAM (Identity &
Access
Management)

Enforce strong authentication and
granular authorization at app
boundaries and in code paths.

6.1 Identity & Authorization; 6.5
Session & Token

CSA CCM
DCS / DSI (Data
Security)

Protect sensitive data in
application flows: classification,
minimization,
masking/tokenization, and in-code
crypto use per CEK.

6.4 Data Protection in Code
Paths

CSA CCM
TVM (Threat &
Vulnerability
Management)

Application-layer testing and
remediation tracking
(contract/negative suites,
authorization/abuse testing).

6.1; 6.2; 6.3; 6.7

Framework Control ID

Control name/description
(application-layer)

Primary linkage to §6 outputs

OWASP
ASVS

V1 (Architecture &
Design)

Threat modeling, trust boundaries,
and attack-surface minimization
proven by architecture artifacts and
tests.

6.2 Contract Enforcement; 6.9
State Stores

OWASP
ASVS

V2 (Authentication)
Standards-based auth flows;
token/session lifecycle, replay
resistance, cookie flags.

6.5 Session & Token

OWASP
ASVS

V3 (Session
Management)

Session lifecycle controls
(establish/rotate/revoke), cookie
flags, fixation/replay resistance.

6.5 Session & Token

Page 35 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Framework Control ID

Control name/description
(application-layer)

Primary linkage to §6 outputs

OWASP
ASVS

V4 (Access Control)

Object/field/function-level
authorization with deny-by-default
and explicit decisions on 100 %
mutating handlers.

6.1 Identity & Authorization

OWASP
ASVS

V5 (Validation,
Sanitization,
Encoding)

Canonicalize → validate →
authorize → encode at each
boundary; safe deserialization;
upstream/downstream schema
checks.

6.3 Input/Serialization/Encoding;
6.2 Contract Enforcement

OWASP
ASVS

V7 (Error Handling
& Logging)

Deterministic error semantics and
structured logging suitable for
detection and forensics.

6.8 Telemetry & Errors

OWASP
ASVS

V9
(Communications)

TLS everywhere; HSTS where
applicable; mTLS for service-to-
service as required.

6.6 Client Hardening

OWASP
ASVS

V12 (Files &
Resources)

Safe file/media handling: type/size
checks, storage outside webroot,
sandbox/AV as justified.

6.6a File & Media Handling

OWASP
ASVS

V14 (Config &
Operations)

Secure headers (CSP, HSTS,
Referrer-Policy, Permissions-
Policy), deterministic error
semantics, operational checks.

6.6 Client Hardening; 6.8
Telemetry & Errors

Framework Control ID

Control name/description

(application-layer)

Primary linkage to §6 outputs

OWASP
API Top 10

API1, API5
Broken Object/Function Level
Authorization—prevent and test
BOLA/BFLA/BOPLA across APIs.

6.1 Identity & Authorization

OWASP
API Top 10

API2
Broken Authentication—harden
flows and tokens; validate
issuer/audience/scope.

6.5 Session & Token

OWASP
API Top 10

Injection & SSRF
(e.g., API8/2019
Injection; API7/2023
SSRF)

Enforce schema validation/SRA,
safe deserialization, encoder-at-
sink, and SSRF egress controls.

6.2; 6.3; 6.7

NOTE: Use of External Control Frameworks.

ISAUnited maps to external control frameworks to provide alignment and traceability,
but does not speak on behalf of those organizations. Practitioners shall consult and
follow the official practices, recommendations, and implementation guidance of the
Center for Internet Security (CIS), the Cloud Security Alliance (CSA), and the Open
Worldwide Application Security Project (OWASP) when applying controls. Always verify
control identifiers, scope, and version currency against the publishers’ latest materials.

Page 36 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Where wording differs, use the framework’s official documentation while maintaining
consistency with ISAUnited security invariants and this standard's requirements.

Additional References

• As application-layer threats and frameworks evolve, sub-standards may

incorporate additional OWASP controls (e.g., ASVS sections beyond those

listed) where they are directly enforced by application behavior. Foundational

NIST/ISO references remain limited to §8.

Sub-Standard Expectations

Sub-standards under this Parent Standard Must:

• Select and enforce explicit application-layer controls relevant to their scope (e.g.,

authorization design, input/contract safety, token/session, data-in-code

protection).

• Provide detailed mappings from each control to §6 outputs, §12 tests, and an

Application Evidence Pack ID.

• Document any deviation from control families with compensating controls and a

sunset date; include passing verification artifacts.

Practitioner Guidance:

• Maintain a Controls → Outputs → Tests sheet: For every row in Table D-4,
record: Control (CSA/CIS/ASVS/API10) → §6 output(s) → Test-ID(s) (§12)
→ Enforcement point (code or first boundary) → Owner → Frequency →
Evidence (EP-04 path).

• Map at clause/task precision: Cite the exact ASVS clause (e.g., V4.1.2), CIS
sub-control (e.g., 16.12), or CSA CCM ID (e.g., AIS-xx). Convert each into
an enforceable behavior in code or gateway policy.

• Pin OWASP API Top 10 version: In sub-standards and project sheets,
explicitly pin 2019 or 2023 and cite the exact category (e.g., API7/2023 —
SSRF).

• Express controls as code or boundary policy: Prefer contracts/headers/rules
at the first boundary (gateway/edge) and keep code-level checks for depth;
avoid policy-only statements.

• Change control in PRs: When a route, contract, authorization rule, or header
policy changes, update the mapping row in the same PR, attach proof (test
results, policy diffs, header scans), and store artifacts under EP-04.

• Acceptance criteria: A control is “implemented” only when its Test-ID passes
in §12 V&V and evidence is present in EP-04 (logs, scans, reports).

Page 37 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Divergence discipline: If a framework clause cannot be met verbatim,
document the compensating control, rationale, and sunset date; include
verification that proves equal or stronger application-layer effect (evidence
in EP-04).

Section 10: Engineering Discipline

This section defines the architectural thinking, rigorous engineering processes, and

disciplined operational behaviors required to implement the Application Security

Architecture & Secure Development (ISAU-DS-AS-1000). ISAUnited’s Defensible

Standards are not compliance checklists; they are engineered systems—grounded in

systems thinking, critical reasoning, and Verification & Validation (V&V)—that produce

measurable, auditable, defensible outcomes across applications, APIs, and client

interactions.

10.1 Purpose & Function

Purpose. Establish a repeatable, auditable way of working that integrates
systems thinking, lifecycle controls, adversary-aware design, and measurable
outcomes for application security.

Function in D10S. Parent Standards set expectations and invariants. Sub-
Standards convert them into controls-as-code, test specifications, and evidence
artifacts embedded in delivery and operations.

10.2 Systems Thinking

Goal: Make the application system end-to-end legible—comprising components,
interfaces, dependencies, and failure modes—so controls are positioned where
risk manifests.

10.2.1 System Definition & Boundaries
• Declare system purpose, scope, stakeholders, and in-/out-of-scope

assets (web/mobile front ends, API gateway,
services/microservices, serverless functions, message queues,
data stores, IdP, secrets service, logging/SIEM).

• Model trust zones and boundary crossings (user→app,
app→service, service→service, app→data store, service→external
API).

10.2.2 Interfaces & Contracts

Page 38 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Maintain Interface Control Documents (ICDs) for application
connections (HTTP/gRPC/async endpoints, queue topics, data
store access patterns, IdP token flows).

• For each interface, specify: authentication/authorization model,
identity type (human/service), contract/schema (OpenAPI/JSON
Schema/Proto), data classification, rate/flow limits, error semantics,
telemetry fields, and security invariants (e.g., “unknown fields
rejected,” “idempotency required on mutating routes”).

10.2.3 Dependencies & Emergent Behavior

• Map shared services (IdP, secrets, time sync, logging, config) and
blast radius per dependency.

• Identify emergent risks from composition (e.g., permissive CORS +
verbose errors → account enumeration; client retries + no
idempotency → duplicate writes; outbound fetch + no egress
allowlist → SSRF).

10.2.4 Failure Modes & Safeguards

• For critical paths, document failure modes (broken
object/field/function authorization, injection/unsafe deserialization,
token replay/fixation, SSRF, telemetry loss) and safeguards (deny-
by-default, strict contracts, idempotency keys, CSP nonces, egress
allowlists, structured logging with correlation IDs).

• Treat security invariants as non-negotiable requirements (for
example: explicit authorization on 100 % mutating handlers, strict
contracts at the first boundary (gateway/edge) with bounds checks
and response schema alignment (SRA), no secrets in code, tokens
validated per request, schema-conformant telemetry ingest = 100
%, and egress allowlists on server-initiated outbound requests).

10.3 Critical Thinking
Goal: Replace assumptions with explicit reasoning that survives review, attack,
and audit.

10.3.1 Decision Discipline
• Use Architecture Decision Records (ADRs): problem → options →

constraints/assumptions → trade-offs → decision → invariants →
Threat-Model Delta → test/evidence plan with Test-ID, Owner,
Frequency, and EP-04 path (who/when/how measured).

10.3.2 Engineering Prompts

• Boundaries: What is the application system? Where are the trust
boundaries and why?

• Interfaces: What must always be true at each interface
(invariants)? How do we test it?

Page 39 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Adversary: Which attack techniques are credible here (e.g.,
BOLA/BFLA/BOPLA, injection/XXE, token replay/nonce bypass,
SSRF)? What is the shortest attack path?

• Evidence: What objective signals prove this control works today
and after the change?

• Failure: When this fails, does it fail safe? What is the operator’s
next action?

Required Artifacts (min): ADRs; assumptions & constraints log; evidence
plan per decision.

10.4 Domain-Wide Engineering Expectations

Secure System Design

• Define application boundaries (front ends, gateway, services, queues,
data stores, IdP, secrets, telemetry sinks).

• Validate boundaries and trust relationships via structured reviews using
§10.2 artifacts.

Implementation Philosophy — “Built-in, not bolted-on.”
• Integrate controls at design time and the first boundary; avoid post-hoc

patching.
• Express controls as contracts/policies-as-code bound to invariants in

§10.2.4 (e.g., strict contracts, explicit authorization, idempotency keys,
CSP nonces, SSRF egress allowlists).

Lifecycle Integration
• Embed application controls into design reviews, code reviews, and release

processes; keep semantics here (Annex D) and delivery mechanics in
Annex J.

• Enforce version-controlled reviews with required ADRs and evidence
updates on every change.

Verification Rigor (V&V)
• Combine automated checks (contract/negative tests, authorization suites,

token/session drills, header scans, SSRF/abuse simulations) with manual
probes (adversary-informed business-logic testing).

• Require continuous validation in pipelines and runtime monitoring tied to
invariants (e.g., unknown-field reject; deny injection; throttle abuse; block
SSRF).

Operational Discipline
• Monitor for drift and unauthorized change; auto-remediate where safe with

time-bounded exceptions.
• Maintain playbooks for token revocation/rotation drills, contract rollback,

header policy regressions, and SSRF containment.
• Contracts include request strictness and SRA; telemetry includes required

fields and 100 % ingest conformance; both are verified by named Test-
IDs.

10.5 Engineering Implementation Expectations

Page 40 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Contracts/Policies as Code. Manage OpenAPI/JSON Schema/Proto,
gateway policies, CSP/CORS/CSRF headers, and SSRF egress allowlists
as code under version control with peer review and provenance.

• Structured Enforcement Path. Build → contract/negative tests →
authorization suite → token/session drills → canary → promote/rollback
(execution in Annex J; semantics and acceptance here).

• Explicit Security Boundaries. Maintain diagrams and ICDs; continuously
validate posture (strict contracts, explicit authorization, CSP nonces,
idempotency, SSRF guards) with targeted audits and smoke tests.

• Automated Security Testing. Integrate static pattern checks for unsafe
serializers/encoders, contract test generation, BOLA/BFLA/BOPLA suites,
abuse/SSRF simulations before production.

• Traceable Architecture Decisions. Link ADRs to controls, tests, and
evidence; include a change-impact checklist that enumerates the affected
§6 outputs and the §12 Test-IDs to re-run; update ADRs and evidence in
EP-04 on each change request.

10.6 Sub-Standard Alignment (inheritance rules)
Sub-Standards must operationalize this discipline with application-specific detail:

• API Authorization & Contract Enforcement (e.g., ISAU-DS-AS-1010).
Explicit authorization on 100% mutating handlers; strict contracts at
gateway and in code; idempotency keys on mutating routes; mapped
Test-IDs for BOLA/BFLA/BOPLA and contract suites.

• Input/Serialization Safety (e.g., ISAU-DS-AS-1020). Canonicalize →
validate → authorize → encode; safe deserialization (allowlists, size/time
limits); encoder-at-sink tests.

• Session & Token Design (e.g., ISAU-DS-AS-1040). OAuth2/OIDC with
PKCE as applicable; per-request token validation; TTL/rotation/revocation
targets; replay/fixation drills.

• Client-Side Protections (e.g., ISAU-DS-AS-1050). CSP with
nonces/hashes; strict CORS; CSRF; clickjacking/MIME defenses; header
policy scans and CSP report analysis.

• Abuse Resistance & SSRF (e.g., ISAU-DS-AS-1060). Per-principal
throttles/backpressure; SSRF egress allowlists/metadata blocks/protocol
constraints; simulation logs.

10.7 Evidence & V&V (what proves it works)
Establish an Application Evidence Pack per system containing:

• Design Evidence: trust-boundary diagrams, interface/route map with
ICDs, invariants register, ADRs (with Threat-Model Delta).

• Build Evidence: contracts/policies-as-code, test results
(contract/negative, authorization, token/session), header scans,
SSRF/abuse simulations.

• Operate Evidence: runtime policy/deny logs (unknown fields,
authorization denials, CSP/CORS/CSRF reports), token

Page 41 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

revocation/rotation drill logs, telemetry samples with required fields and
ingest conformance = 100 %, incident and rollback records.

• Challenge Evidence: red-team/business-logic test reports, bug-bounty
findings, adversary-emulation outcomes, remediation closure with re-test.

10.8 Example: Sub-Standard Discipline Alignment (API Authorization &
Contract Enforcement)

Scope: ISAU-DS-AS-1010 API Authorization & Contract Enforcement
Design: Define trust boundaries and invariants (e.g., “explicit authorization on
100% mutating handlers,” “strict contracts at the first boundary,” “idempotency
keys on mutating routes”): document decision points and enforcement locations
per route.
Implement: Express contracts and gateway policies as code; generate validators
in services; enforce deny-by-default for protected resources; require per-request
token validation and idempotency keys.
V&V: Run contract/negative suites (100% pass); execute BOLA/BFLA/BOPLA
tests; measure authorization coverage; simulate duplicate POST with identical
Idempotency-Key; verify logs include trace_id/control_id.
Operate: Evidence Pack includes contract/policy repo history, gate results,
authorization coverage reports, deny/validation logs, CSP/CORS/CSRF scans
where applicable, incidents, and closed-loop remediation.

Each control requires objective pass/fail criteria, a specified test frequency, a
designated responsible owner, and a defined retention policy. Map EP-04 IDs into §12
traceability and keep Test-ID, Owner, Frequency fields with every artifact.

Practitioner Guidance:

• Maintain a Controls → Outputs → Tests sheet: each Table D-4 control
maps to §6 output(s), §12 Test-ID(s), enforcement point (code or first
boundary), Owner, Frequency, and EP-04 evidence path.

• Update the sheet in the same PR that changes a route, contract,
authorization rule, token policy, or header policy; attach proofs and store
artifacts under EP-04.

• A change is “done” only when the impacted §12 Test-IDs have passed, and
the new evidence is present in EP-04.

Page 42 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Section 11. Associate Sub-Standards Mapping

Purpose of Sub-Standards

ISAUnited Defensible Sub-Standards under Application Security Architecture & Secure
Development are tightly scoped, engineering-driven extensions that:

• Define granular, application-layer requirements (ASR-IDs) for specialized
domains.

• Translate architectural intent into enforceable behaviors in code and at app
boundaries (contracts/gateways).

• Specify verification/validation methods that yield test artifacts
(unit/contract/abuse) referenced in §12.

• Align directly to the Parent Standard’s §6 outputs and §7 principles, with
traceable evidence.

Interface notes (non-normative):

• Annex D produces app-layer requirements, enforcement points, and tests.
• Annex J ensures those tests run in CI/CD and at promotion; SBOM/provenance

and gates live there.
• Annex I (CEK) governs crypto parameters and key lifecycles; Annex D governs

correct use in code.

Scope and Focus of Application Security Sub-Standards

Sub-Standards developed under this Parent Standard will address specialized areas,
including but not limited to:

Secure API Authorization & Contract Safety
Example Sub-Standard: ISAU-DS-AS-1010 – API Authorization & Gateway Contract
Enforcement

• Object/field/function-level authorization (RBAC/ABAC/ReBAC) for 100% mutating
handlers.

• Strict contract/schema validation (OpenAPI/JSON-Schema/Proto) with unknown-
field reject and bounds checks.

• Idempotency keys for mutating HTTP routes; gateway/edge policy must mirror
code semantics.

• Maps to §6: 6.1, 6.2, 6.5
• Tests: authorization (BOLA/BFLA/BOPLA), contract, idempotency.

Secure Coding & Code Review Standard
Example Sub-Standard: ISAU-DS-AS-1020 – Secure Coding & Review
(Validation/Encoding/Deserialization)

• Canonicalize→Validate→Authorize→Encode sequence at every boundary.
• Safe serialization/deserialization (type allowlists, size/time limits; gadget

resolution disabled).
• Context-correct output encoding (HTML/JS/CSS/URL/SQL params).

Page 43 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Maps to §6: 6.3
• Tests: negative/fuzz/grammar tests; sink-focused unit tests.

Application Dependency Governance & Component Safety
Example Sub-Standard: ISAU-DS-AS-1030 – Library/Framework Usage & Unsafe
Pattern Elimination

• Approved library lists and version constraints for parsers, template engines,
JSON/XML libs, and crypto calls.

• Prohibit insecure APIs/patterns (eval/exec, unsafe reflection, raw SQL
concatenation).

• Application-side inventory and policy (Annex J handles SBOM/provenance
enforcement).

• Maps to §6: 6.3, 6.4
• Tests: static pattern checks; targeted unit tests for risky call sites.

Application Data Protection & Privacy Engineering
Example Sub-Standard: ISAU-DS-AS-1040 – Data Classification, Minimization,
Masking/Tokenization in Code

• Data element classification; collection/retention minimization;
masking/tokenization rules.

• In-code cryptographic use via CEK-approved primitives; logging redaction with
error semantics.

• Maps to §6: 6.4, 6.8
• Tests: data-path unit tests; redaction/format assertions.

Client Interaction & Browser Surface Hardening
Example Sub-Standard: ISAU-DS-AS-1050 – CSP/CORS/CSRF & Clickjacking
Defenses

• CSP with nonces/hashes for dynamic content; strict CORS; CSRF protections on
state-changing endpoints.

• X-Frame-Options/Frame-Ancestors; X-Content-Type-Options; explicit MIME
expectations.

• Maps to §6: 6.6, 6.8
• Tests: header scan, CSP report analysis, CSRF/iframe harness tests.

Abuse Resistance & SSRF Controls
Example Sub-Standard: ISAU-DS-AS-1060 – Rate Limits/Backpressure & Egress
Safety for SSRF

• Throttle/block automated abuse ≥ 95% at app boundary; pagination/size/time
bounds.

• SSRF mitigations: egress allowlists, metadata/localhost block, protocol/port
constraints, DNS pinning.

• Maps to §6: 6.7
• Tests: abuse/credential-stuffing simulations; SSRF block tests.

State Stores, Queues, and Caches Integrity

Page 44 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Example Sub-Standard: ISAU-DS-AS-1070 – Message/Session Integrity, TTL, Replay
Control

• Integrity (HMAC/AEAD) for cross-boundary messages; tenant/env isolation;
idempotency/de-dupe.

• Schema enforcement with 100% pass rate for queue payloads.
• Maps to §6: 6.9
• Tests: schema validators; replay/idempotency tests.

Table D-5. Example Future Sub-Standards:

Sub-Standard
ID

Sub-Standard Name

Focus Area

ISAU-DS-AS-

1010

API Authorization & Gateway Contract Enforcement API authorization & contracts

ISAU-DS-AS-

1020

Secure Coding & Review
(Validation/Encoding/Deserialization)

Input/serialization safety

ISAU-DS-AS-

1030

Library/Framework Usage & Unsafe Pattern
Elimination

Dependency governance in code

ISAU-DS-AS-

1040

Data Classification, Minimization &
Masking/Tokenization

Data protection & privacy in code

ISAU-DS-AS-

1050

CSP/CORS/CSRF & Clickjacking Defenses Client/boundary hardening

ISAU-DS-AS-

1060

Rate Limits/Backpressure & Egress Safety (SSRF) Abuse resistance

ISAU-DS-AS-

1070

Message/Session Integrity, TTL & Replay Control State stores & queues integrity

ISAU-DS-AS-

1080

(Optional) RASP / In-App Controls

In-process detection/defense

Page 45 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Sub-Standard
ID

Sub-Standard Name

Focus Area

Development and Approval Process

ISAUnited uses an open, peer-driven annual process to propose, review, and publish
sub-standards:

• Open Season Submission — Proposals must cite Annex D §6 outputs and §7
principles they extend, plus NIST/ISO clauses from §8.

• Technical Peer Review — Evaluate engineering rigor, testability, and clarity of
enforcement points.

• Approval & Publication — Assigned identifier, version, and publication as an
actionable extension.

Sub-Standard Deliverables (normative)

Each sub-standard Must include:

• Inputs (Requirements): Preconditions from Annex D §5, it depends on.
• Outputs (Specifications): Concrete application behaviors with thresholds

(SLOs).
• Verification/Validation: Named tests (unit/contract/abuse) and acceptance

criteria tied to §12; Test-IDs, Owner, and Frequency must be declared.
• Evidence: Artifact list and storage location (EP-04 or child packs EP-04.x).
• Standards Mapping: ASR-ID/Spec → NIST/ISO clause (from §8) → Controls

(from §9) → Test-ID → Evidence (EP-04 path).
• Interfaces: What is enforced in code/boundary (Annex D) vs. what is executed in

delivery (Annex J) and crypto parameters (Annex I).
• Version pins (when applicable): If referencing OWASP API Top 10, pin the

version year (2019 or 2023) and cite the exact category (e.g., API7/2023 —
SSRF).

Practitioner Guidance:

• Start with your app’s ASR-IDs and choose the sub-standards that apply; for
each ASR-ID, identify the enforcement point in code and at the first
boundary (gateway/edge), then assign a Test-ID, Owner, and Frequency,
and store artifacts under EP-04 (or EP-04.x).

• Keep a one-page Sub-Standard Readiness Sheet per app: inputs satisfied,
outputs targeted, Test-IDs named, artifact paths (EP-04), and clause
mappings (from §8) to controls (from §9).

Page 46 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• If a requirement spills into CI/CD (e.g., “run contract tests on every merge”),
reference Annex J rather than duplicating mechanics here.

• When citing OWASP API Top 10, pin the version year (2019 or 2023) and
category.

Section 12: Verification and Validation

The effectiveness and defensibility of an application security architecture must be

continuously verified and validated using structured, engineering-grade assessments.

While detailed test requirements for specific stacks will live in Application sub-

standards, this Parent establishes the gold-standard expectations below.

Verification confirms the application has been implemented according to this
standard’s Requirements (Inputs, §5) and Technical Specifications (Outputs, §6).

Validation proves the application performs under real operating conditions and
withstands adversarial testing.

Core Verification Activities

• Confirm §6 controls exist and are enforced at the first boundary (gateway/edge)
and in code: strict contracts (OpenAPI/JSON Schema/Proto) with unknown-field
reject and bounds checks; explicit authorization on 100 % mutating handlers;
OAuth2/OIDC token validation per request; idempotency on mutating routes;
CSP nonces/hashes; strict CORS; CSRF protections; SSRF egress allowlists for
server-initiated outbound requests; structured logging with trace_id/control_id;
immutable audit storage.

• Review application coding standards and libraries against approved lists: safe
serializers, encoder-at-sink usage, banned APIs/patterns; confirm unsafe
deserialization disabled with allowlists and size/time limits.

• Verify integration points and contracts: IdP ↔ app token flows, gateway ↔
service validators, secrets service ↔ application code, telemetry pipeline ↔
SIEM, ensure controls do not break business-critical paths.

• Peer-review architecture diagrams, trust-boundary maps, interface/route ICDs,
header policies, gateway policies, authorization decision maps, and control
mappings for completeness and accuracy.

Core Validation Activities

• Perform adversarial testing, application/API penetration testing, business-logic
abuse probes, and BAS/emulation, focused on: BOLA/BFLA/BOPLA,

Page 47 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

injection/XXE, unsafe deserialization, token replay/fixation, SSRF, and abuse
throttling.

• Validate runtime resilience with automated and manual methods aligned to
credible attack paths (for example, deny unknown fields at gateway; block SSRF
to metadata/localhost; throttle credential stuffing; reject duplicate POSTs without
Idempotency-Key).

• Test operational resilience: contract rollback to last-known-good, header policy
regression detection (CSP/CORS/CSRF), token revocation/rotation drills, and
error-template checks for deterministic non-leaking responses.

• Measure performance against targets such as contract pass rate, authorization
coverage on mutating handlers, CSP violation rate, abuse throttle/block rate,
token revocation latency, and schema-conformance at ingest (100 %).

Required Deliverables

All Verification & Validation efforts must produce documented outputs that include:

1. Test Plans and Procedures — Scope, tooling, and methods for verification and
validation phases, including Test-IDs, Owner, and Frequency.

2. Validation Reports — Pass/fail results, residual risk, and prioritized remediation
actions tied to §6 outputs and ASR-IDs.

3. Evidence Artifacts — Contract/negative test reports, BOLA/BFLA/BOPLA suite
results, token/session drill logs, header scans (CSP/CORS/CSRF), SSRF/abuse
simulation logs, structured event samples with trace_id/control_id, and
immutability settings—each labeled and stored under EP-04 (or child packs EP-
04.x) and referenced in Table D-6.

4. Corrective Action Plans — Time-bound remediation for findings that must be
closed before acceptance.

Common Pitfalls to Avoid

• Treating “pen test” as a box-check instead of adversary-aware validation of
Annex D invariants (for example, strict contracts, explicit authorization, encoder
at sink, SSRF egress control).

• Missing evidence: tests run, but artifacts are not versioned, immutable, or linked
to Table D-6/EP-04.

• Skipping continuous validation in dynamic areas (new routes/interfaces,
policy/header changes, library/serializer upgrades).

Page 48 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Table D-6. Traceability Matrix: Requirements (§5) to Verification/Validation (§12)
and Technical Specifications (§6):

Requiremen
t ID

Requirement
(summary)

Verification (build-correct)
Validation (works-

right)

Related

§6
Outputs

5.1
Threat modeling
practice & artifacts

DFDs/trust-boundaries/abuse-
case catalog present and
versioned; change includes
Threat-Model Delta.

Abuse-case
scenarios execute;
invariants hold at
boundaries.

6.1, 6.2,
6.3, 6.6,
6.7

5.2
ASR-ID catalog
(application
requirements)

ASR-IDs map to enforcement
points (code + first boundary)
and named Test-IDs.

Tests for each
ASR-ID pass;
traces show
enforcement firing.

6.1–6.10
(as
applicable
)

5.3
API inventory &
contract repository

Authoritative
OpenAPI/Schema/Proto in strict
mode; unknown-field reject and
SRA (response schema)
configured.

Contract/negative +
SRA suite 100 %
pass for external
routes.

6.2

5.4
AuthN/Authorization
baseline

Authn pattern + authorization
model defined; decision points
identified.

BOLA/BFLA/BOPL
A suite 100 %
pass; 100 %
mutating handlers
have explicit
authorization.

6.1, 6.5

5.5
Input/serialization &
encoding standards

Approved libraries; unsafe APIs
banned; sequence defined.

Injection & unsafe
deserialization
blocked; encoder
tests pass.

6.3

5.6
Data classification &
privacy-by-design

Data map;
minimization/masking/tokenizatio
n rules documented.

Redaction tests
pass; accidental PII
in logs ≤ 0.1 % (7-
day window).

6.4, 6.8

5.7
Session & token
lifecycle policy

Token/session rules; cookie
flags set
(Secure/HttpOnly/SameSite).

TTL ≤ 60 min;
revocation/rotation
≤ 5 min;
replay/fixation
blocked.

6.5

Page 49 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Requiremen
t ID

Requirement
(summary)

Verification (build-correct)
Validation (works-

right)

Related

§6
Outputs

5.8
Telemetry & error
semantics

Structured event schema
enforced; error templates
defined.

Event samples
include
trace_id/control_id;
user errors have a
correlation ID;
upstream
immutability
verified; ingest
conformance =
100%.

6.8

5.9
Abuse-resistance &
egress safety

Rate limits/backpressure; SSRF
allowlists + metadata/localhost
blocks.

Abuse simulations
show ≥ 95 %
block/throttle;
SSRF blocked with
evidence.

6.7

5.10

Dependency/compone
nt policy (app view)

App-side inventory and version
constraints for critical libs.

Static/pattern
checks clean; no
dangerous API
usage.

6.3, 6.4

Evidence guidance

Attach: DFDs; contracts/schemas and SRA test reports; ASR-ID catalog;
unit/contract/abuse test results; serializer/encoder audits; token/session drill logs;
header scans (CSP/CORS/CSRF); abuse/SSRF simulation logs; structured event
samples; immutability settings. Store under EP-04 (or EP-04.x).

How to use this matrix

• Plan: For each §5 requirement, define ≥ 1 verification and ≥ 1 validation tied to
§6 outputs; assign Owner and Frequency and record EP-04 locations.

• Execute: Run tests; record SLO met / not met with direct artifact links in EP-04.
• Maintain: On any requirement/enforcement change, update the row and re-run

impacted tests.

Page 50 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Practitioner Guidance:

• Start from boundaries: Confirm contracts and explicit authorization at every
boundary before deeper tests; then validate code-level checks for depth.

• Name your tests: Give each verification/validation a stable Test-ID and keep
it in EP-04 alongside the ASR-ID it proves; include Owner and Frequency.

• Measure four indicators: authorization coverage on mutating handlers,
contract pass rate, CSP violation rate, abuse block/throttle rate—review
weekly.

• Interface cleanly: If a requirement needs CI/CD execution (for example, “run
contract suite on each merge”), reference Annex J for delivery mechanics;
keep the semantic requirement and tests here.

Quick Win Playbook:

Title: “Contract + Authorization” V&V Smoke Suite with Fail-Closed Gates

Objective: Prove that strict contracts and explicit authorization are enforced before
promotion, and block releases when they are not.

Target: Stand up a “contract + authorization” V&V smoke suite with fail-closed
gates for one high-value service (§6.1, §6.2, §12).

Component/System: API gateway (first boundary), CI pipeline stage, application
service (OpenAPI/JSON Schema/Proto), test harness.

Protects: The application from BOLA/BFLA/BOPLA, malformed/hostile inputs, and
duplicate side-effects on mutating routes.

Stops/Detects: Missing explicit authorization on mutating handlers; unknown
fields/out-of-bounds values; unsafe deserialization paths; duplicate POSTs without
Idempotency-Key.

Action:

• Enable strict contracts at the gateway (unknown-field reject, numeric/enum
bounds); generate and wire validators in the service.

• Implement explicit authorization checks at object/field/function scope on all
mutating handlers; require Idempotency-Key on POST/PUT/PATCH.

• Add a CI “V&V smoke” stage that runs: (1) contract/negative tests, (2)
BOLA/BFLA/BOPLA suite, (3) idempotency duplicate-request test.

• Execute a staging run: valid request → allow; unknown field/out-of-bounds
→ 4xx; duplicate POST (same Idempotency-Key) → no second side-effect;
unauthorized object access → deny.

• Set gates to fail-closed on any test failure; capture logs with
trace_id/control_id.

Page 51 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Proof: Contract manifest; gateway policy export; CI job log with Test-IDs;
deny/validation logs; authorization coverage report → EP-04.3.

Metric: Contract/negative tests pass rate = 100 % for targeted routes; 100 %
mutating handlers covered by explicit authorization tests; duplicate-request test
prevents second side-effect; all denials logged with trace_id/control_id.

Rollback: Temporarily set the CI gate to warn-only for the service and revert the
validator/authorization commit; record the exception with the owner and expiry in
EP-04.3.

Section 13: Implementation Guidelines

This section does not prescribe vendor-specific tactics. Parent Standards are stable,

long-lived architectural foundations. Here, we define how sub-standards and delivery

teams must translate the Parent’s intent into operational behaviors that are testable,

automatable, and auditable for Application Security Architecture & Secure Development

(Annex D). Delivery mechanics (pipeline orchestration, SBOM/provenance,

promotion/rollback) are governed by Annex J.

Purpose of This Section in Sub-Standards

Sub-standards must use Implementation Guidelines to:

• Translate architectural expectations from the Parent into enforceable run-time
and first-boundary (gateway/edge) behaviors (e.g., strict contracts, explicit
authorization, CSRF/CSP/CORS, SSRF egress allowlists).

• Provide stack-agnostic practices that improve adoption, reduce failure, and align
with ISAUnited’s defensible design philosophy.

• Highlight common failure modes and how to prevent them with measurable gates
and checks.

• Offer repeatable patterns (as code) that enforce controls, trust models, and
engineering discipline across front ends, API gateways, services/microservices,
serverless functions, queues, data stores, IdP, secrets, and telemetry.

Open Season Guidance for Contributors

Contributors developing sub-standards Must:

• Align all guidance with this Parent’s strategic posture and §6 outputs.

Page 52 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Avoid vendor/product terms; express controls as requirements, tests, and
evidence.

• Include lessons learned (what fails, why, and how the test proves it).

• Focus on repeatable engineering patterns (contracts/policies-as-code), not one-
offs.

• Provide a minimal Standards Mapping (Spec/Control → NIST/ISO clause from §8
→ Evidence Pack ID).

Technical Guidance

A. Organizing Principles (normative)
1. Everything as code — Contracts (OpenAPI/JSON Schema/Proto), gateway

policies, header policies (CSP/CORS), CSRF protections, SSRF egress
allowlists, logging schemas, and runbooks Must be version-controlled, peer-
reviewed, and promoted on protected branches.

2. Gated change — Every merge/release Must pass non-bypassable security
gates tied to §6 and §12 acceptance criteria (for example, contract/negative
tests = 100 %, explicit authorization coverage = 100 % on mutating handlers,
CSP/CORS/CSRF scans clean, SSRF allowlist tests pass, SRA checks
pass).

3. Immutable, reproducible releases — No manual policy or code changes post-
build; releases Must be reproducible and verified at the first boundary and in
code.

4. Least privilege & JIT (application context) — Service identities, automation
accounts, and admin functions Must be scoped; step-up/MFA for high-impact
actions; error templates and logs Must preserve confidentiality while
remaining diagnostically useful.

5. Environment parity — Staging Must mirror production controls (contracts,
authorization, headers, SSRF, logging schema) so test results are predictive;
drift Must be monitored and reconciled; telemetry ingest must meet schema-
conformance = 100 % in staging.

B. Guardrails by Pipeline Stage (normative)

1. Pre-commit / local
• Secrets scanning and signed commits required.
• Pre-commit hooks Should generate/validate API contracts and run

encoder/serializer linters; block unsafe APIs/patterns.
2. Pull request (PR) / code review

• CODEOWNERS approval required; record a Threat-Model Delta for
significant boundary or contract changes.

• Contract/negative gate for all changed routes; Critical findings = 0.
• Response schema alignment (SRA) tests for changed routes must pass
• Authorization coverage check for changed mutating handlers; encoder-at-

sink checks; evidence pointers in PR (planned §12 Test-IDs and Evidence
Pack ID stub).

Page 53 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

3. Build & package
• Deterministic artifacts (pinned libraries; no ad-hoc fetch at deploy);

integrity checks for contracts/policies-as-code.
• Generate validators from contracts; package header policies and SSRF

allowlists as deployable config.
4. Pre-deploy / release

• Config drift detection against approved contracts/policies; approvals “as
code.”

• Progressive rollout (staged/canary) for gateway/headers/SSRF rules with
health SLOs and automatic rollback; include SRA tests for changed
routes.

• Positive/negative traffic-contract tests for external and inter-service flows;
idempotency tests on mutating routes.

5. Deploy & runtime
• Enforce strict contracts at the first boundary (unknown-field reject;

numeric/enum bounds) and uphold in code.
• Per-request token validation (issuer/audience/scope); CSRF protections

on state-changing endpoints; CSP with nonces/hashes; explicit, minimal
CORS.

• SSRF controls: egress allowlists, metadata/localhost blocks, protocol/port
constraints.

• Unified logging schema (ts, actor, action, resource, result, trace_id,
control_id, data_class, error_code); logs to immutable storage with
authenticated time sync.

6. Post-deploy validation & operations
• Continuous validation: contract/negative suites, BOLA/BFLA/BOPLA tests,

header policy scans, abuse/SSRF simulations on a schedule.
• Track Security SLOs: contract pass rate, authorization coverage, CSP

violation rate (≤ 0.1% over 7 days), abuse throttle/block rate (≥ 95%),
token revocation latency, schema conformance at ingest (100%).

• Auto-generate child Evidence Pack(s) per release (**EP-04.x**) with
policy/contract/SRA diffs, validation results, deny logs, token/session drill
logs, header scan outputs, SSRF/abuse simulation logs, and ADR links.

C. Identity, Tokens, and Secrets (normative alignment to §6.4–§6.6, §6.8)

• Validate OAuth2/OIDC tokens per request; require PKCE for public
clients; define rotation/revocation drills and record latency.

• Secrets never in repos or images; inject at runtime via approved services
with audit trails; redact in logs.

• Error templates Must be deterministic, non-leaking, and include correlation
IDs; telemetry Must meet the required schema.

D. Application Supply-Chain Integrity (normative; mechanics in Annex J)

• Only deploy artifacts whose contracts/policies and code passed gates;
restrict sources and namespaces.

Page 54 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Quarantine and verify third-party packages; enforce license and integrity
checks.

• Separate build and deploy identities; forbid production writes from build
jobs; treat contract/policy tamper as a release-blocking event.

E. Measurement & Acceptance (aligned to §6 and §12)
• Contracts & Boundary: strict-mode enforcement; SRA (response)

schemas enforced; contract/negative pass on external routes = 100 %;
idempotency on mutating routes.

• Authorization: explicit decisions on 100 % mutating handlers;
BOLA/BFLA/BOPLA suite = 100 % pass.

• Client Surface: CSP nonces/hashes enabled; CSP violation rate ≤ 0.1 %
over a 7-day window; CORS minimal/explicit; CSRF protections verified.

• Abuse/SSRF: ≥ 95 % throttled/blocked at boundary; SSRF egress controls
verified by tests.

• Logging & Evidence: schema-conformant events at ingest = 100 %;
immutable retention; every change linked to EP-04 (trace §5 → §6 →
§12).

Common Pitfalls (and the engineered countermeasure)

1. Pipelines as suggestions → Enforce non-bypassable gates; block
merges/releases on fails; keep failing artifacts as proof.

2. One-time scanning → Treat checks as recurring gates; require coverage for
changed items and boundary enforcement events.

3. Manual hot-fixes/drift → Detect & reconcile drift; forbid out-of-band edits; require
ADRs and rollback plans.

4. Open egress / unvetted outbound calls → Enforce SSRF allowlists and
protocol/port constraints; test them.

5. Weak headers and leaky errors → Enforce CSP/CORS/CSRF and deterministic
error templates with correlation IDs.

6. Unsafe serialization/encoding → Ban unsafe serializers; require encoder-at-sink
checks.

7. No evidence → Every release Must have an Application Evidence Pack ID with
linked tests and results.

Practitioner Guidance:

• Start from ASR-IDs: for each requirement, identify the enforcement point
(gateway policy, handler, serializer) and the named tests
(unit/contract/abuse) proving it; record **Test-ID, Owner, and Frequency**,
and link artifacts to **EP-04** (or **EP-04.x**).

Page 55 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

• Prefer first-boundary controls (contracts/headers) and retain code checks
for depth; ensure strict-mode contracts at the gateway and encoder-at-sink
in code; keep all artifacts under EP-04.

• Track four indicators weekly: authorization coverage (mutating handlers),
contract pass rate, CSP violation rate, and abuse throttle/block rate.
(Optional secondary: token revocation latency; schema conformance at
ingest.)

• When routes/contracts/trust boundaries change, include a Threat-Model
Delta in the PR and update affected tests and evidence links.

• If enforcement needs CI/CD or runtime promotion mechanics, reference
Annex J; for cryptographic parameters and key lifecycles, reference Annex I
(CEK).

Quick Win Playbook:

Title: PR and Pre-Deploy Security Gates for Route/Contract Changes

Objective: Stop unsafe route or contract changes at review time by enforcing non-
bypassable PR and pre-deploy gates.

Target: Wire non-bypassable PR and pre-deploy gates for one high-value service
(§13.A.2, §13.B.2–4; §6.1, §6.2; §12).

Component/System: Repo (contracts/policies-as-code), CI checks, API gateway
(first boundary), application service (OpenAPI/JSON Schema/Proto), test harness.

Protects: Prevents schema drift, missing authorization on mutating handlers, and
unsafe changes from reaching production.

Stops/Detects: Unknown-field/bounds violations; mutating routes without explicit
authorization tests; header regressions (CSP/CORS/CSRF); missing Test-IDs/EP
links.

Action:

• Add CODEOWNERS and a Threat-Model Delta template to the repo;
require it on PRs that change routes/contracts.

• Enable strict mode at the gateway (unknown-field reject, numeric/enum
bounds checks); generate and wire validators in the service.

• Require Idempotency-Key on POST/PUT/PATCH; implement explicit
object/field/function authorization on all mutating handlers.

• Add PR gates: (1) contract/negative tests = 100 % pass, (2) authorization
coverage report = 100 % on mutating handlers, (3) header scan
(CSP/CORS/CSRF) clean for changed paths, (4) SRA tests pass, (5) Test-
ID + EP-04 link present in the PR.

• Add pre-deploy canary: replay contract/negative + SRA suites and header
scan against the canary; block promotion on failures.

Page 56 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Proof: CODEOWNERS + PR template diffs; gateway policy export; validator
commit; CI job logs with Test-IDs; authorization coverage and header/SRA scan
results → EP-04.4.

Metric: 100 % PRs touching routes/contracts pass gates; contract/negative/SRA =
100 %; 100 % mutating handlers covered by explicit authorization tests; CSP
violation rate ≤ 0.1 % over a 7-day window for changed paths; zero promotions with
failed gates.

Rollback: Temporarily set the service gates to warn-only and revert the
validator/authorization/header-policy commit; record an exception with the owner
and expiry in EP-04.4.

Page 57 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Appendices

Appendix A: Engineering Traceability Matrix (ETM)

Re
q
ID

Requirement
(Inputs) (§5)

Technical
Specification
s (Outputs)

(§6)

Core
Principles

(§7)

Control
Mappings

(§9)

Verification –
Build Correct

(§12)

Validation –
Works Right

(§12)

Eviden
ce

Pack
ID

5.1

Threat
modeling
practice &
artifacts

§6.1 Identity &
Authorization;
§6.2 Contract
Enforcement;
§6.3
Input/Serializat
ion; §6.9 State
Stores

RP-05
Secure by
Design;
RP-03
Complete
Mediation

OWASP
ASVS V1
Architecture;
CSA CCM
AIS

DFDs, trust-
boundary
maps, and
abuse-case
catalog present
and versioned

Abuse-case
scenarios
execute, and
invariants hold
at boundaries

EP-04

5.2

ASR-ID
catalog
(application
requirements)

§6.1–§6.10 (all
relevant
outputs)

RP-05
Secure by
Design;
RP-15
Evidence
Production

CIS 16.x;
OWASP
ASVS V4 &
V5

ASR-IDs map
to code + first
boundary
enforcement +
Test-IDs

Tests for each
ASR-ID pass;
traces show
enforcement
firing

EP-04

5.3
API inventory
& contract
repository

§6.2 API
Boundary &
Contract
Enforcement;
§6.9 State
Stores

RP-03
Complete
Mediation;
RP-06
Minimize
Attack
Surface

OWASP
ASVS V5;
CSA CCM
AIS

Strict-mode
schema
validation
enabled;
unknown fields
rejected

Contract/negativ
e suite = 100%
pass on
external routes

EP-
04.1

5.4

Authenticatio
n &
Authorization
baseline

§6.1 Identity &
Authorization;
§6.5 Session
& Token

RP-01
Least
Privilege;
RP-02 Zero
Trust; RP-
03
Complete
Mediation

OWASP
API1/API5/A
PI2; CIS 6.x

Authn model +
decision map
validated;
explicit
object/field/fun
ction auth
present.

BOLA/BFLA/BO
PLA suite =
100% pass;
100% mutating
handlers have
explicit
authorization

EP-
04.1

5.5

Input/serializa
tion &
encoding
standards

§6.3 Input,
Serialization &
Output
Encoding

RP-04
Defense in
Depth; RP-
06
Minimize
Attack
Surface

OWASP
ASVS V5;
ASVS V12
(files/resourc
es)

Canonicalizatio
n + validation
pipeline
present; unsafe
deserialization
disabled;
banned API list
enforced

Injection &
unsafe-
deserialization
tests clean;
sink-focused
encoder tests
pass.

EP-
04.2

5.6

Data
classification
& privacy-by-
design

§6.4 Data
Protection in
Code Paths;
§6.8
Telemetry &
Errors

RP-18
Confidential
ity; RP-19
Integrity

CSA CCM
DSI; CIS 3.x

Data map,
minimization &
masking rules
validated

Redaction tests
pass; accidental
PII ≤ 0.1% over
7 days

EP-
04.4

Page 58 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Re
q
ID

Requirement
(Inputs) (§5)

Technical
Specification
s (Outputs)

(§6)

Core
Principles

(§7)

Control
Mappings

(§9)

Verification –
Build Correct

(§12)

Validation –
Works Right

(§12)

Eviden
ce

Pack
ID

5.7

Session &
token
lifecycle
policy

§6.5 Session
& Token
Security

RP-02 Zero
Trust; RP-
10 Secure
Defaults

OWASP
ASVS V2,
V3; CIS 6.x

Token/session
rules validated;
cookie flags
set;
TTL/rotation
tests present

Token
replay/fixation
blocked;
revocation
honored ≤5
minutes

EP-
04.1

5.8

Application-
layer
telemetry &
error
semantics

§6.8
Telemetry &
Errors

RP-15
Evidence
Production;
RP-16
Make
Detection
Easier

CIS 8.x; CSA
CCM DCS

Structured
schema
validated; error
templates
defined;
immutability
configured

100% ingest
schema
conformance;
correlation IDs
appear in logs;
upstream
immutability
confirmed

EP-04

5.9

Abuse-
resistance &
SSRF
controls

§6.7 Abuse
Resistance &
SSRF
Controls

RP-06
Minimize
Attack
Surface;
RP-04
Defense in
Depth

OWASP
API8; ASVS
V9

Rate-
limit/backpress
ure and SSRF
allowlists
validated

≥95%
automated
abuse
throttled/blocke
d; SSRF
blocked with
evidence

EP-
04.6

5.1
0

Dependency
& component
governance

§6.3
Input/Serializat
ion; §6.4 Data
Protection;
§6.10 RASP
(optional)

RP-06
Minimize
Attack
Surface;
RP-10
Secure
Defaults

CIS 16.x;
OWASP
ASVS V5

Dependency
inventory
enforced;
unsafe patterns
blocked; static
analysis clean.

Library misuse
tests pass; no
dangerous API
calls reachable

EP-
04.3

Page 59 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Appendix B: EP-04 Summary Matrix – Evidence Pack Overview

Layer

EP
Identifier

Purpose Evidence Categories Included

Parent
EP

EP-04
Stores architecture-wide
application-layer evidence
supporting §§5, 6, 10, 12.

• DFDs, trust-boundary maps, interface
diagrams
• ASR-ID catalog
• Contract repo references
• Invariants register
• Logging schema & error templates
• Quick Win: Contract Strict Mode Smoke Test
(Section 6/12) — first-boundary strict-mode
enforcement w/ pass/fail logs
• Quick Win: Gateway policy export proofs

Sub-EP EP-04.1
API Authorization & Contract
Enforcement (AS-1010).

• Authorization decision maps
• Contract strict-mode validation logs
• BOLA/BFLA/BOPLA suite results
• Idempotency-Key test results
• Gateway policy exports
• Quick Win (6.2): Schema reject tests
• Quick Win (12): Contract + Authorization V&V
Smoke Suite

Sub-EP EP-04.2
Secure Coding,
Input/Serialization Safety (AS-
1020).

• Canonicalization tests
• Encoder-at-sink validations
• Safe deserialization enforcement
• Static/semantic analysis evidence
• Quick Win: Injection-negative suite
• Quick Win: Serializer safety fuzz tests

Sub-EP EP-04.3
Dependency & Component
Governance (AS-1030).

• Dependency inventory
• Unsafe pattern detection logs
• Allowed/denied API list
• Quick Win: Supply-chain vulnerability block
report
• Quick Win: Library misuse detection tests

Sub-EP EP-04.4
Data Protection & Privacy
Engineering (AS-1040).

• Data classification map
• Masking/tokenization evidence
• Log redaction output
• Crypto usage proof
• Quick Win: PII leakage scan (target ≤0.1%
over 7 days)

Sub-EP EP-04.5
Client Interaction & Browser
Security (AS-1050).

• CSP/CORS/CSRF evidence
• Header scans (CSP violation rate ≤0.1%)
• XFO/MIME header logs
• Quick Win: CSP report-only → enforced
transition test
• Quick Win: Header regression smoke test

Sub-EP EP-04.6
Abuse Resistance & SSRF
Controls (AS-1060).

• Throttle/backpressure logs
• SSRF block logs
• Egress allowlist enforcement
• Quick Win: SSRF smoke-test with
allowed/blocked cases
• Quick Win: Abuse simulation (≥95% blocked)

Page 60 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Layer

EP
Identifier

Purpose Evidence Categories Included

Sub-EP EP-04.7
State Stores, Queues & Cache
Integrity (AS-1070).

• HMAC/AEAD evidence
• TTL/replay/idempotency validations
• Schema validation logs
• Quick Win: Duplicate-request suppression test

Sub-EP EP-04.8
Optional: RASP / In-App
Runtime Controls (AS-1080).

• RASP block/report samples
• Latency impact measurements
• Quick Win: RASP rule simulation

Future
Sub-EPs

EP-04.9+
Reserved for future sub-
standards.

• Will inherit the same EP structure, including
Quick Win mapping.

Page 61 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Adoption References

NOTE: ISAUnited Charter Adoption of External Organizations.

ISAUnited formally adopts the work of the International Organization for Standardization

/ International Electrotechnical Commission (ISO/IEC) and the National Institute of

Standards and Technology (NIST) as foundational standards bodies, and the Center for

Internet Security (CIS), the Cloud Security Alliance (CSA), and the Open Worldwide

Application Security Project (OWASP) as security control–framework organizations.

This adoption aligns with each organization’s public mission and encourages use by

practitioners and institutions. ISAUnited incorporates these organizations into its charter

so that every Parent Standard and Sub-Standard is grounded in a common, defensible

foundation.

a) Foundational Standards (Parent level).

ISAUnited adopts ISO/IEC and NIST as foundational standards organizations.

Parent Standards align with these bodies for architectural grounding and

auditability, and extend that foundation through ISAUnited’s normative, testable

specifications. This alignment does not supersede ISO/IEC or NIST.

b) Security Control Frameworks (Control level).

ISAUnited adopts CIS, CSA, and OWASP as control framework organizations.

Control mappings translate architectural intent into enforceable technical controls

within Parent Standards and Sub-Standards. These frameworks provide

alignment at the implementation level rather than at the foundational level.

c) Precedence and scope.

Foundational alignment (ISO/IEC, NIST) establishes the architectural baseline.

Control frameworks (CIS, CSA, OWASP) provide enforceable mappings.

ISAUnited’s security invariants and normative requirements govern

implementation details while remaining consistent with the adopted

organizations.

d) Mapping.

Each cited control mapping is tied to a defined output, an associated verification

and validation activity, and an Evidence Pack ID to maintain end-to-end

traceability from requirement to control, test, and evidence.

e) Attribution.

ISAUnited cites organizations by name, respects attribution requirements, and

conducts periodic alignment reviews. Updates are recorded in the Change Log

with corresponding evidence.

f) Flow-downs.

(Parent → Sub-Standard). Parent alignment to the International ISO/IEC and

NIST flows down as architectural invariants and minimum requirements that Sub-

Page 62 of 62

Obsolete and withdrawn documents should not be used; please use replacements.

Standards must uphold or tighten. Parent-level mappings to CIS, CSA, and

OWASP flow down as implementation control intents that Sub-Standards must

operationalize as controls-as-code, tests, and evidence. Each flow-down shall

reference the Parent clause, the adopted organization name, the Sub-Standard

clause that implements it, the associated verification/validation test, and an

Evidence Pack ID for traceability. Any variance requires a written rationale,

compensating controls, and a time-bounded expiry recorded with an Evidence

Pack ID.

Change Log and Revision History

Review Date Changes Committee Action Status

December

2025

Standards

Revision
Standards Committee

Publication Pending

November

2025

Standards

Submitted

Technical Fellow

Society

Peer review Pending

October 2025
Standards

Revision

Task Group ISAU-

TG39-2024

Draft submitted Complete

December

2024

Standards

Development

(Parent D01)

Task Group ISAU-

TG39-2024

Draft complete Complete

End of Document
IO.

